login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 256^n.
3

%I #32 Aug 13 2024 09:11:11

%S 1,256,65536,16777216,4294967296,1099511627776,281474976710656,

%T 72057594037927936,18446744073709551616,4722366482869645213696,

%U 1208925819614629174706176,309485009821345068724781056

%N a(n) = 256^n.

%C Number of different possible values that a file of n bytes can have; each byte has 8 bits and each bit can be 0 or 1.

%C The sequence shows how many different files can exist even with a very small amount of data (just a few bytes). With just 5 bytes of data, there are 1099511627776 different possible files.

%C Partial sums are in A218723. - _M. F. Hasler_, Nov 05 2012

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (256).

%F From _Elmo R. Oliveira_, Aug 11 2024: (Start)

%F G.f.: 1/(1-256*x).

%F E.g.f.: exp(256*x).

%F a(n) = 256*a(n-1), n > 0. (End)

%e a(1) = 256^1 = 256 --> there are 256 possible 1-byte files;

%e a(2) = 256^2 = 65536 --> there are 65536 possible 2-byte files;

%e a(3) = 256^3 = 16777216 --> there are 16777216 possible 3-byte files;

%e a(4) = 256^4 = 4294967296 --> there are 4294967296 possible 4-byte files;

%e a(5) = 256^5 = 1099511627776 --> there are 1099511627776 possible 5-byte files.

%t lst={};Do[AppendTo[lst,256^n],{n,0,4!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Mar 02 2009 *)

%t 256^Range[0,20] (* _Harvey P. Dale_, Aug 21 2014 *)

%o (Python)

%o def A133752(n): return 1<<(n<<3) # _Chai Wah Wu_, Nov 10 2022

%Y Subsequence of A000079.

%Y Cf. A218723.

%K easy,nonn

%O 0,2

%A Marcel Hetkowski Fabeny (marcelfabeny(AT)yahoo.com.br), Jan 01 2008

%E Edited by _Jon E. Schoenfield_, Jan 24 2015