login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

2

%I #19 Mar 23 2022 13:00:03

%S 1,4,9,19,37,75,149,299,597,1195,2389,4779,9557,19115,38229,76459,

%T 152917,305835,611669,1223339,2446677,4893355,9786709,19573419,

%U 39146837,78293675,156587349,313174699,626349397,1252698795,2505397589,5010795179,10021590357,20043180715

%N A007318^(-1) * A133648.

%H Michael De Vlieger, <a href="/A133649/b133649.txt">Table of n, a(n) for n = 0..3320</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,2).

%F Inverse binomial transform of A133648.

%F From _R. J. Mathar_, Dec 13 2008: (Start)

%F a(n) = A062092(n), n > 1.

%F G.f.: (1+2x)*(1+x+x^2)/((1-2x)*(1+x)). (End)

%e a(3) = (-1, 3, -3, 1) dot (1, 5, 18, 59) = (-1, 15, -54, 59), where A133648 = (1, 5, 18, 59, 184, 561, ...).

%t CoefficientList[Series[(1 + 2 x) (1 + x + x^2)/((1 - 2 x) (1 + x)), {x, 0, 33}], x] (* _Michael De Vlieger_, Mar 23 2022 *)

%Y Cf. A007318, A062092, A133648.

%K nonn

%O 0,2

%A _Gary W. Adamson_, Sep 19 2007