login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133606
Numbers n with all digits different, such that all of its digits divide n, but none of the nonzero digits not in n divide n.
2
1, 124, 175, 412, 1326, 1362, 1395, 1935, 3126, 3162, 3195, 3915, 4172, 9315, 14728, 17248, 21784, 72184, 123864, 124368, 126384, 132648, 132864, 136824, 138624, 142368, 148632, 162384, 163248, 163824, 164328, 164832, 168432, 183264, 186432
OFFSET
1,2
COMMENTS
Digit 1 must appear in each term. - Michael S. Branicky, Jul 06 2021
REFERENCES
Rodolfo Kurchan, Snark, December 2007
LINKS
Rodolfo Kurchan, Dec 27 2007, Table of n, a(n) for n = 1..116
EXAMPLE
124 is divisible by 1, 2 and 4 and it is not divisible by 3, 5, 6, 7, 8 and 9.
175 is divisible by 1, 5 and 7 and it is not divisible by 2, 3, 4, 6, 8 and 9.
The final term, 864312, is divisible by 8, 6, 4, 3, 1 and 2, but not by 5, 7 or 9.
MATHEMATICA
Select[Range@200000, (s=IntegerDigits@#; Length@s==Length@Union@s&&
Quiet@AllTrue[#/s, IntegerQ]&&NoneTrue[#/Complement[Range@9, s], IntegerQ])&] (* Giorgos Kalogeropoulos, Jul 06 2021 *)
Select[Range[200000], DigitCount[#, 10, 0]==0&&Max[DigitCount[#]]==1 && AllTrue[ #/IntegerDigits[#], IntegerQ]&&NoneTrue[#/Complement[Range[ 9], IntegerDigits[ #]], IntegerQ]&] (* Harvey P. Dale, Dec 30 2021 *)
PROG
(Python)
def ok(n):
s = str(n); ss = set(s)
return '0' not in ss and len(s) == len(ss) and all(n%int(d) == 0 for d in ss) and all(n%int(d) for d in set("123456789")-ss)
print(list(filter(ok, range(200000)))) # Michael S. Branicky, Jul 06 2021
(Python) # generates entire sequence
from sympy.utilities.iterables import multiset_permutations
def agen():
for digits in range(1, 10):
for mp in multiset_permutations("123456789", digits):
n, mpc = int("".join(mp)), set("123456789") - set(mp)
if all(n%int(d) == 0 for d in mp) and all(n%int(d) for d in mpc):
yield n
print([an for an in agen()]) # Michael S. Branicky, Jul 06 2021
CROSSREFS
Cf. A133598.
Sequence in context: A056085 A129010 A196582 * A372680 A270864 A038866
KEYWORD
nonn,fini,full,base
AUTHOR
Rodolfo Kurchan, Dec 27 2007
EXTENSIONS
Name clarified by Michael S. Branicky, Jul 06 2021
STATUS
approved