login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133514
Biquadrateful (i.e., not biquadrate-free) palindromes.
1
272, 464, 656, 848, 2112, 2992, 4224, 6336, 8448, 14641, 21312, 21712, 23232, 23632, 25152, 25552, 25952, 27072, 27472, 27872, 29392, 29792, 31213, 40304, 40704, 42224, 42624, 44144, 44544, 44944, 46064, 46464, 46864, 48384, 48784, 61216, 61616, 62426, 63136
OFFSET
1,1
COMMENTS
This is to A035133 as 4th powers are to cubes. To make an analogy between analogies, the preceding sentence is to "A130873 is to 4th powers as A120398 is to cubes" as palindromes are to sums of two distinct prime powers.
FORMULA
A002113 INTERSECTION A046101.
EXAMPLE
a(10) = 14641 = 11^4 (the smallest odd value in this sequence).
a(11) = 21312 = 2^6 * 3^2 * 37.
MAPLE
isA046101 := proc(n) local ifs, f ; ifs := ifactors(n)[2] ; for f in ifs do if op(2, f) >= 4 then RETURN(true) ; fi ; od: RETURN(false) ; end: isA002113 := proc(n) local digs, i ; digs := convert(n, base, 10) ; for i from 1 to nops(digs) do if op(i, digs) <> op(-i, digs) then RETURN(false) ; fi ; od: RETURN(true) ; end: isA133514 := proc(n) isA046101(n) and isA002113(n) ; end: for n from 1 to 100000 do if isA133514(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, Jan 12 2008
# second Maple program:
q:= n->StringTools[IsPalindrome](""||n) and max(map(i->i[2], ifactors(n)[2]))>3:
select(q, [$1..70000])[]; # Alois P. Heinz, Sep 27 2023
MATHEMATICA
a = {}; For[n = 2, n < 100000, n++, If[FromDigits[Reverse[IntegerDigits[n]]] == n, b = 0; For[l = 1, l < Length[FactorInteger[n]] + 1, l++, If[FactorInteger[n][[l, 2]] > 3, b = 1]]; If[b == 1, AppendTo[a, n]]]]; a (* Stefan Steinerberger, Dec 26 2007 *)
Select[Range@100000, PalindromeQ@#&&3<Max@Last@Transpose@FactorInteger@#&] (* Hans Rudolf Widmer, Sep 27 2023 *)
CROSSREFS
Sequence in context: A316574 A062906 A253361 * A235293 A270302 A304549
KEYWORD
base,nonn
AUTHOR
Jonathan Vos Post, Nov 30 2007
EXTENSIONS
More terms from Stefan Steinerberger, Dec 26 2007
More terms from R. J. Mathar, Jan 12 2008
STATUS
approved