Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Oct 21 2022 21:59:15
%S 0,1,2,3,4,5,7,14,36,93,220,474,948,1807,3381,6385,12393,24786,50559,
%T 103702,211585,427351,854702,1698458,3368259,6690150,13333932,
%U 26667864,53457121,107232053,214978335,430470899,860941798,1720537327,3437550076,6869397265
%N a(n) = Sum_{k>=0} binomial(n,5*k+1).
%C From _Gary W. Adamson_, Mar 14 2009: (Start)
%C M^n * [1,0,0,0,0] = [A139398(n), A139761(n), A139748(n), A139714(n), a(n)]
%C where M = a 5 X 5 matrix [1,1,0,0,0; 0,1,1,0,0; 0,0,1,1,0; 0,0,0,1,1; 1,0,0,0,1]
%C Sum of terms = 2^n. Example: M^6 * [1,0,0,0,0] = [7, 15, 20, 15, 7] = 2^6 = 64. (End)
%C {A139398, A133476, A139714, A139748, A139761} is the difference analog of the hyperbolic functions of order 5, {h_1(x), h_2(x), h_3(x), h_4(x), h_5 (x)}. For a definition see the reference "Higher Transcendental Functions" and the Shevelev link. - _Vladimir Shevelev_, Jun 18 2017
%D A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
%H Robert Israel, <a href="/A133476/b133476.txt">Table of n, a(n) for n = 0..3260</a>
%H Vladimir Shevelev, <a href="https://arxiv.org/abs/1706.01454">Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n</a>, arXiv:1706.01454 [math.CO], 2017.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,2).
%F a(n) = 5a(n-1) - 10a(n-2) + 10a(n-3) - 5a(n-4) + 2a(n-5).
%F Sequence is identical to its fifth differences.
%F O.g.f.: x*(x-1)^3/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)) = (1/5)*(3*x^3-7*x^2+6*x-1)/(x^4-2*x^3+4*x^2-3*x+1)-(1/5)/(2*x-1). - _R. J. Mathar_, Nov 30 2007
%F Starting (1, 2, 3, 4, 5, 7, ...) = binomial transform of (1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, ...). - _Gary W. Adamson_, Jul 03 2008
%F a(n) = round((2/5)*(2^(n-1)+phi^n*cos(Pi*(n-2)/5))), where phi is the golden ratio, round(x) is the nearest to x integer. - _Vladimir Shevelev_, Jun 18 2017
%F a(n+m) = a(n)*H_1(m) + H_1(n)*H_2(m) + H_5(n)*H_3(m) + H_4(n)*H_4(m) + H_3(n)*H_5(m), where H_1=A139398, H_3=A139714, H_4=A139748, H_5=A139761. - _Vladimir Shevelev_, Jun 18 2017
%p f:= gfun:-rectoproc({a(n)=5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+2*a(n-5),
%p seq(a(i)=i,i=0..4)},a(n),remember):
%p map(f, [$0..30]); # _Robert Israel_, Dec 20 2015
%t LinearRecurrence[{5, -10, 10, -5, 2}, Range[0, 4], 40] (* _Jean-François Alcover_, Jul 10 2018 *)
%o (PARI) a(n) = sum(k=0, n\5, binomial(n,5*k+1)); \\ _Michel Marcus_, Dec 21 2015
%Y Cf. A049016.
%K nonn,easy
%O 0,3
%A _Paul Curtz_, Nov 29 2007
%E Better definition from _N. J. A. Sloane_, Jun 13 2008
%E Edited by _N. J. A. Sloane_, Jul 02 2008 at the suggestion of _R. J. Mathar_