%I #5 Jul 12 2012 00:39:49
%S 1,1,1,2,2,3,3,6,6,9,10,13,16,18,36,46,56,92,128,146,202,238,476,678,
%T 724,816,1054,1200,2254,3070,3794,6048,6864,7918,13966,17760,18814,
%U 21884,25678,33596,40460,66138,88022,105782,211564,229324,317346,357806
%N Start with a(1)=1; for n >= 1, a(n+1)=a(n)+a(k) with k=[n-n-th digit of "e"]. If k<0 or k=0, then a(k)=0.
%C Terms of this "eBonacci sequence" computed by Gilles Sadowski.
%H Gilles Sadowski, <a href="/A133392/b133392.txt">Table of n, a(n) for n = 1..101</a>
%e For n=7 we have a(8)=a(7)+a(k) with k=(7-1) [because "1" is the 7th digit of "e": 2,7,1,8,2,8,(1),8,2,...] So a(8)=a(7)+a(6)=3+3=6
%K base,easy,nonn
%O 1,4
%A _Eric Angelini_, Nov 23 2007