This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133247 Prime numbers p with property that no odd Fibonacci number is divisible by p. 5
 2, 17, 19, 23, 31, 53, 61, 79, 83, 107, 109, 137, 167, 173, 181, 197, 211, 227, 229, 241, 257, 271, 293, 317, 349, 379, 383, 409, 421, 439, 443, 467, 499, 503, 541, 571, 587, 593, 601, 617, 631, 647, 653, 683, 691, 739, 751, 769, 773, 797, 811, 827, 829, 857 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Mathematica coding uses the fact that the Pisano period - the period with which a Fibonacci sequence (mod n) repeats itself is not more than 6n and the fact that the Fibonacci sequence starts with 0. Subsequence of A133246 except for 2. Primes not in A155916. - Robert Israel, Nov 20 2016 LINKS Robert Israel, Table of n, a(n) for n = 1..2000 MAPLE filter:= proc(p) local a, b, i;   if not isprime(p) then return false fi;   a:= 0: b:= 1; for i from 2 do   a, b:= b, (a+b) mod p;   if b = 0 then     if i mod 3 <> 0 then return false     elif a = 1 then return true     fi   fi od: end proc: select(filter, [2, seq(i, i=3..1000, 2)]); # Robert Israel, Nov 20 2016 MATHEMATICA Transpose[ Select[Table[{Prime[m], Select[Table[{n, Mod[Fibonacci[n], Prime[m]]}, {n, 6Prime[m] + 1}], Mod[ #[[1]], 3] != 0 && #[[2]] == 0 &]}, {m, 300}], #[[2]] == {} &]][[1]] CROSSREFS Cf. A014437, A133246, A155916. Sequence in context: A038980 A074857 A191018 * A216965 A145100 A145101 Adjacent sequences:  A133244 A133245 A133246 * A133248 A133249 A133250 KEYWORD nonn AUTHOR Tanya Khovanova, Oct 14 2007, Oct 17 2007, Nov 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 17:02 EST 2018. Contains 318172 sequences. (Running on oeis4.)