Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 03 2019 03:03:01
%S 0,1,2,20,55,667,1856,22646,63037,769285,2141390,26133032,72744211,
%T 887753791,2471161772,30157495850,83946756025,1024467105097,
%U 2851718543066,34801724077436,96874483708207,1182234151527715,3290880727535960,40161159427864862
%N Indices of decagonal numbers (A001107) that are also triangular (A000217).
%C For n>0, a(n) = (A055979(n) - A056161(n))/2, with those two sequences related through the Diophantine equation 2x^2 + 3x + 2 = r^2. - _Richard R. Forberg_, Nov 24 2013
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1, 34, -34, -1, 1).
%F For n>5, a(n) = 34*a(n-2) - a(n-4) - 12.
%F For n>6, a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
%F For n>1, a(n) = 1/16 * ((2*sqrt(2) + (-1)^n)*(1 + sqrt(2))^(2*n - 3) - (2*sqrt(2) - (-1)^n)*(1 - sqrt(2))^(2*n - 3) + 6).
%F For n>1, a(n) = ceiling (1/16*(2*sqrt(2) + (-1)^n)*(1 + sqrt(2))^(2*n - 3)).
%F G.f.: ( 1 - 33*x^2 + 18*x^3 + 2*x^4 ) / ((1 - x ) * (1 - 6*x + x^2 ) * (1 + 6*x + x^2)).
%F lim (n -> Infinity, a(2n+1)/a(2n)) = 1/7*(43 + 30*sqrt(2)).
%F lim (n -> Infinity, a(2n)/a(2n-1)) = 1/7*(11 + 6*sqrt(2)).
%e The third number which is both decagonal (A001107) and triangular (A000217) is A133216(3)=10. As this is the second decagonal number, we have a(3) = 2.
%t LinearRecurrence[{1, 34, -34, -1, 1} , {0, 1, 2, 20, 55, 667}, 24] (* first term 0 corrected by _Georg Fischer_, Apr 02 2019 *)
%Y Cf. A000217, A001107, A077443, A077442, A133216, A133218.
%K nonn
%O 1,3
%A _Richard Choulet_, Oct 11 2007; _Ant King_, Nov 04 2011
%E Entry revised by _Max Alekseyev_, Nov 06 2011