login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of all n-digit cake numbers.
0

%I #11 Nov 30 2019 09:13:43

%S 15,240,4780,97055,2025120,43102338,933680790,20113923047,

%T 433568150212,9328838294868,201092030447970,4332220161894898,

%U 93326831839333367,2010735085618839810,43319850539113451407,933285813634428329651,20107085833468562876519,433194255274554129774434

%N Sum of all n-digit cake numbers.

%H E.W. Weisstein, <a href="http://mathworld.wolfram.com/CylinderCutting.html">Cylinder Cutting</a>

%e Sum of all 1-digit cake numbers is 1 + 2 + 4 + 8 = 15.

%e Sum of all 2-digit cake numbers is 15 + 26 + 42 + 64 + 93 = 240.

%e Sum of all 3-digit cake numbers is 130 + 176 + 232 + 299 + 378 + 470 + 576 + 697 + 834 + 988 = 4780.

%t digNum[n_] := Length @ IntegerDigits[n]; cake[n_] := (n^3 + 5n + 6)/6; digCount = 0; sum = 0; cumsum = {}; Do[c = cake[n]; If[digNum[c] > digCount, digCount++; AppendTo[cumsum, sum]]; sum += c, {n, 0, 10^6}]; Differences[cumsum] (* _Amiram Eldar_, Nov 30 2019 *)

%Y Cf. A000125.

%K nonn,base,less

%O 1,1

%A _Parthasarathy Nambi_, Oct 10 2007

%E More terms from _Amiram Eldar_, Nov 30 2019