login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^2 + k - 41 is prime.
1

%I #10 Jun 13 2017 10:19:06

%S 8,15,20,21,26,29,36,45,48,59,68,69,75,78,98,99,108,111,113,120,129,

%T 134,138,140,143,161,168,185,188,189,210,213,215,216,218,224,230,231,

%U 234,251,255,260,266,273,278,279,281,290,294,299,306,308,314,320,329,356

%N Numbers k such that k^2 + k - 41 is prime.

%e If k=8, then k^2 + n - 41 = 31 (prime).

%e If k=99, then k^2 + n - 41 = 9859 (prime).

%p isA133157 := proc(n) isprime(n*(n+1)-41) ; end: for n from 1 to 400 do if isA133157(n) then printf("%d, ",n) ; fi ; od: # _R. J. Mathar_, Jan 08 2008

%t Select[Range[7, 400], PrimeQ[ #^2 + # - 41] &] (* _Stefan Steinerberger_, Dec 24 2007 *)

%o (PARI) is(n)=isprime(n^2+n-41) \\ _Charles R Greathouse IV_, Jun 13 2017

%Y Cf. A002837.

%K nonn,easy

%O 1,1

%A _Parthasarathy Nambi_, Dec 17 2007

%E More terms from _Stefan Steinerberger_, Dec 24 2007

%E More terms from _R. J. Mathar_, Jan 08 2008