%I #6 Mar 17 2019 22:15:58
%S 9,67,1080,4140,21147,794545,4213597,27644437,190899322,1382958545,
%T 93345011951,682076806159,5832742205057,51724158235372,
%U 474869816156751,4506715738447323,44152005855084346,445958869294805289,4638590332229999353,49631246523618756274,545717047936059989389,6160539404599934652455
%N Sum of all n-digit Bell numbers.
%C For n >= 11, there is at most one Bell number with n digits. - _Robert Israel_, Mar 17 2019
%H Robert Israel, <a href="/A133120/b133120.txt">Table of n, a(n) for n = 1..999</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BellNumber.html">Bell Number</a>
%e Sum of all 1-digit Bell numbers is 9.
%e Sum of all 2-digit Bell numbers is 67.
%e Sum of all 3-digit Bell numbers is 1080.
%p N:= 80: # for a(1)..a(N)
%p A:= Vector(N):
%p for n from 0 do
%p b:= combinat:-bell(n);
%p k:= ilog10(b)+1;
%p if k > N then break fi;
%p A[k]:= A[k]+b;
%p od:
%p convert(A,list): # _Robert Israel_, Mar 17 2019
%Y Cf. A000110.
%K nonn,base
%O 1,1
%A _Parthasarathy Nambi_, Sep 18 2007
%E More terms from _Robert Israel_, Mar 17 2019