login
Sum of all n-digit Bell numbers.
1

%I #6 Mar 17 2019 22:15:58

%S 9,67,1080,4140,21147,794545,4213597,27644437,190899322,1382958545,

%T 93345011951,682076806159,5832742205057,51724158235372,

%U 474869816156751,4506715738447323,44152005855084346,445958869294805289,4638590332229999353,49631246523618756274,545717047936059989389,6160539404599934652455

%N Sum of all n-digit Bell numbers.

%C For n >= 11, there is at most one Bell number with n digits. - _Robert Israel_, Mar 17 2019

%H Robert Israel, <a href="/A133120/b133120.txt">Table of n, a(n) for n = 1..999</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BellNumber.html">Bell Number</a>

%e Sum of all 1-digit Bell numbers is 9.

%e Sum of all 2-digit Bell numbers is 67.

%e Sum of all 3-digit Bell numbers is 1080.

%p N:= 80: # for a(1)..a(N)

%p A:= Vector(N):

%p for n from 0 do

%p b:= combinat:-bell(n);

%p k:= ilog10(b)+1;

%p if k > N then break fi;

%p A[k]:= A[k]+b;

%p od:

%p convert(A,list): # _Robert Israel_, Mar 17 2019

%Y Cf. A000110.

%K nonn,base

%O 1,1

%A _Parthasarathy Nambi_, Sep 18 2007

%E More terms from _Robert Israel_, Mar 17 2019