login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the constant formed by concatenating the imperfect numbers.
1

%I #10 Dec 16 2021 16:32:14

%S 1,2,3,4,5,7,8,9,1,0,1,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,2,0,2,1,2,2,

%T 2,3,2,4,2,5,2,6,2,7,2,9,3,0,3,1,3,2,3,3,3,4,3,5,3,6,3,7,3,8,3,9,4,0,

%U 4,1,4,2,4,3,4,4,4,5

%N Decimal expansion of the constant formed by concatenating the imperfect numbers.

%C A theorem of Copeland & Erdős proves that this constant is 10-normal. - _Charles R Greathouse IV_, Feb 06 2015

%H Harvey P. Dale, <a href="/A133017/b133017.txt">Table of n, a(n) for n = 0..1000</a>

%H A. H. Copeland and P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1946-01.pdf">Note on normal numbers</a>, Bull. Amer. Math. Soc. 52 (1946), pp. 857-860.

%e 0.12345789101112131415161718192021222324252627293031...

%t Flatten[IntegerDigits/@Table[If[PerfectNumberQ[n],Nothing,n],{n,70}]] (* _Harvey P. Dale_, Dec 16 2021 *)

%o (PARI) print1(1); for(n=2, 45, if(sigma(n,-1)!=2, d=digits(n); for(i=1, #d, print1(", "d[i])))) \\ _Charles R Greathouse IV_, Feb 06 2015

%Y Cf. A007376, A033307, A033308, A079718. Imperfect numbers: A132999.

%K cons,easy,nonn,base

%O 0,2

%A _Omar E. Pol_, Oct 20 2007