login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(Sum_{k=1..n} prime(k), Product{j=1..n} prime(j)).
2

%I #39 Mar 23 2024 17:31:44

%S 2,1,10,1,14,1,2,77,10,3,10,1,238,1,82,3,110,3,2,213,2,7,874,3,530,

%T 129,158,3,370,177,430,3,994,3,2,3,646,2747,2914,21,3266,3,3638,3,

%U 2014,3,14,4661,1222,5117,1070,69,5830,3,2,6601,6870,7141,2,1,26,5

%N a(n) = gcd(Sum_{k=1..n} prime(k), Product{j=1..n} prime(j)).

%C From _M. F. Hasler_, Mar 10 2014: (Start)

%C The terms a(n) must have the same parity as the sum of the first n primes, A007504(n), which is the opposite of the parity of the index n. Otherwise said, the sequence is congruent to 0,1,0,1,0,1,... (mod 2).

%C The since the terms of this sequence are divisors of primorials A002110, they are squarefree numbers, A005117.

%C Is it true, and if so, can it be proved that

%C * all of the squarefree numbers do appear?

%C * all of the squarefree numbers do appear infinitely often?

%C At least it seems that this is the case for the terms 1, 2 and 3. (End)

%C A239070(n) = position of first occurrence of n-th squarefree number in this sequence. - _Reinhard Zumkeller_, Mar 10 2014

%H Alois P. Heinz, <a href="/A132995/b132995.txt">Table of n, a(n) for n = 1..10000</a> (first 9592 terms from M. F. Hasler)

%F A132995(n) = gcd(A007504(n), A002110(n)). - _M. F. Hasler_, Mar 10 2014

%e The first 7 primes are 2,3,5,7,11,13,17. 2+3+5+7+11+13+17 = 58 = 2*29. So a(7) = gcd(58, 2*3*5*7*11*13*17) = 2.

%p seq(gcd(add(ithprime(i),i=1..n), mul(ithprime(j),j=1..n)), n=1..50); # _Emeric Deutsch_, Nov 24 2007

%p # second Maple program:

%p with(numtheory):

%p s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+ithprime(n)) end:

%p a:= n-> mul(`if`(i<=ithprime(n), i, 1), i=factorset(s(n))):

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Mar 10 2014

%t nn=60;With[{prs=Prime[Range[nn]]},Table[GCD[Total[Take[prs,n]], Times@@Take[ prs,n]],{n,nn}]] (* _Harvey P. Dale_, May 07 2011 *)

%o (PARI) c=s=0;forprime(p=2,1e5,f=factor(s+=p,p);f[,2]=apply(t->t<=p,f[,1]);write("/tmp/b132995.txt",c++" "factorback(f))) \\ _M. F. Hasler_, Mar 09 2014

%o (Haskell)

%o a132995 n = a132995_list !! (n-1)

%o a132995_list = tail $ f a000040_list 0 1 where

%o f (p:ps) u v = (gcd u v) : f ps (p + u) (p * v)

%o -- _Reinhard Zumkeller_, Mar 09 2014

%Y Cf. A007504, A002110.

%K nonn,look

%O 1,1

%A _Leroy Quet_, Nov 22 2007

%E More terms from _Emeric Deutsch_, Nov 24 2007