login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n + 25).
12

%I #47 Feb 20 2023 09:21:51

%S 0,26,54,84,116,150,186,224,264,306,350,396,444,494,546,600,656,714,

%T 774,836,900,966,1034,1104,1176,1250,1326,1404,1484,1566,1650,1736,

%U 1824,1914,2006,2100,2196,2294,2394,2496,2600,2706,2814,2924,3036,3150,3266,3384

%N a(n) = n*(n + 25).

%C a(n) is the Zagreb 1 index of the Mycielskian of the cycle graph C[n]. See p. 205 of the D. B. West reference. - _Emeric Deutsch_, Nov 04 2016

%D Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

%H G. C. Greubel, <a href="/A132767/b132767.txt">Table of n, a(n) for n = 0..5000</a>

%H Felix P. Muga II, <a href="https://www.researchgate.net/publication/267327689_Extending_the_Golden_Ratio_and_the_Binet-de_Moivre_Formula">Extending the Golden Ratio and the Binet-de Moivre Formula</a>, Preprint on ResearchGate, March 2014.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Mycielskian">Mycielskian</a>.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 2*n + a(n-1) + 24 (with a(0)=0). - _Vincenzo Librandi_, Aug 03 2010

%F a(n) = n^2 + 25*n. - _Omar E. Pol_, Nov 04 2016

%F From _Chai Wah Wu_, Dec 17 2016: (Start)

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.

%F G.f.: 2*x*(13 - 12*x)/(1-x)^3. (End)

%F From _Amiram Eldar_, Jan 16 2021: (Start)

%F Sum_{n>=1} 1/a(n) = H(25)/25 = A001008(25)/A102928(25) = 34052522467/223092870000, where H(k) is the k-th harmonic number.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/25 - 19081066231/669278610000. (End)

%F E.g.f.: x*(26 + x)*exp(x). - _G. C. Greubel_, Mar 13 2022

%t Table[n (n + 25), {n, 0, 50}] (* _Bruno Berselli_, Aug 22 2018 *)

%t LinearRecurrence[{3,-3,1},{0,26,54},60] (* _Harvey P. Dale_, Feb 20 2023 *)

%o (PARI) a(n)=n*(n+25) \\ _Charles R Greathouse IV_, Jun 17 2017

%o (Sage) [n*(n+25) for n in (0..50)] # _G. C. Greubel_, Mar 13 2022

%Y Cf. A001008, A002378, A005563, A028347, A028552, A028557, A028560, A028563, A028566, A028569, A098603, A098847, A098848, A098849, A098850, A102928, A120071, A132759, A132760, A132761, A132762, A132763, A132764, A132765, A132766.

%K nonn,easy

%O 0,2

%A _Omar E. Pol_, Aug 28 2007