Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 23 2024 04:44:56
%S 1,2,4,8,8,16,32,32,64,128,128,256,512,512,1024,2048,2048,4096,8192,
%T 8192,16384,32768,32768,65536,131072,131072,262144,524288,524288,
%U 1048576,2097152,2097152,4194304,8388608,8388608,16777216,33554432,33554432,67108864,134217728,134217728,268435456,536870912,536870912
%N Sequence is identical to its second differences in absolute values.
%H G. C. Greubel, <a href="/A132720/b132720.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,4).
%F After 1, 2, repeat 4^p, 2*4^p, 2*4^p, p positive.
%F G.f.: 1 + 2*x*(1 +2*x +4*x^2)/(1 - 4*x^3). - _R. J. Mathar_, Nov 07 2015
%F a(n) = 2^floor((2*n+3)/3) = 2^A004396(n+1), n >= 1. - _G. C. Greubel_, Feb 15 2021 [corrected by _Jason Yuen_, Sep 23 2024]
%F Sum_{n>=0} 1/a(n) = 13/6. - _Amiram Eldar_, Aug 16 2022
%t Join[{1},LinearRecurrence[{0, 0, 4},{2, 4, 8},45]] (* _Ray Chandler_, Sep 23 2015 *)
%t Table[2^Floor[(2*n+3)/3] - Boole[n==0], {n, 0, 45}] (* _G. C. Greubel_, Feb 15 2021 *)
%o (Sage)
%o def A132170(n): return 2^floor((2*n+3)/3) if n>0 else 1
%o [A132170(n) for n in (0..45)] # _G. C. Greubel_, Feb 15 2021
%o (Magma)
%o A132170:= func< n | n eq 0 select 1 else 2^Floor((2*n+3)/3) >;
%o [A132170(n): n in [0..45]]; // _G. C. Greubel_, Feb 15 2021
%Y Cf. A004396.
%K nonn,easy
%O 0,2
%A _Paul Curtz_, Nov 16 2007
%E Terms a(24) onward added by _G. C. Greubel_, Feb 15 2021