login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 16/Pi.
0

%I #24 Feb 20 2024 02:33:25

%S 5,0,9,2,9,5,8,1,7,8,9,4,0,6,5,0,7,4,4,6,0,4,2,8,0,4,2,7,9,2,0,4,5,9,

%T 5,8,5,1,0,2,7,0,8,6,6,3,6,9,4,6,0,6,3,5,9,9,2,5,3,5,5,0,0,9,8,8,4,6,

%U 9,7,5,2,4,2,9,5,2,4,9,1,2,2,8,8,3,6,4,1,6,8,8,5,2,0,0,9,8,7,5,0,5,9,4,3,3

%N Decimal expansion of 16/Pi.

%D Bruce C. Berndt, Ramanujan’s Notebooks, Part II, Springer-Verlag, New York, 1989.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals 4 + Sum_{k>=0} binomial(2*k,k)^2/((k+1)^2*16^k). - _Amiram Eldar_, May 21 2021

%F 16/Pi = 5 + 1^2/(10 + 3^2/(10 + 5^2/(10 + ...))). See Berndt, Entry 25, p. 140, with n = 0 and x = 5. - _Peter Bala_, Feb 18 2024

%e 5.092958178940650744604280427920459585102708663694606359925355....

%t RealDigits[N[16/Pi,6! ]] (* _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009 *)

%o (PARI) 16/Pi \\ _Charles R Greathouse IV_, Oct 01 2022

%Y Cf. A019683, A049541, A060294, A089491, A088538, A086201, A132696 to A132699, A132701, A132702.

%K cons,easy,nonn

%O 1,1

%A _Omar E. Pol_, Aug 31 2007

%E More terms from _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009