login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(n) mod n^2.
5

%I #27 Oct 27 2023 21:49:36

%S 0,1,2,3,5,8,13,21,34,55,89,0,64,181,160,219,152,316,210,365,362,287,

%T 91,288,25,389,317,291,378,440,869,261,574,339,765,432,443,533,1285,

%U 1355,1641,1504,85,1741,20,551,1832,576,1457,1525,389,803,2066,332,1820,245

%N a(n) = Fibonacci(n) mod n^2.

%C a(n)=0 for n=1 and n=12 only (conjecture).

%H Alois P. Heinz, <a href="/A132634/b132634.txt">Table of n, a(n) for n = 1..20000</a> (first 1000 terms from Hieronymus Fischer)

%e a(13) = 64, since Fibonacci(13) = 233 == 64 (mod 13^2).

%p p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,

%p `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):

%p a:= n-> p(<<0|1>, <1|1>>, n, n^2)[1, 2]:

%p seq(a(n), n=1..80);

%t Table[Mod[Fibonacci[n],n^2],{n,200}] (* _Vladimir Joseph Stephan Orlovsky_, Nov 28 2010 *)

%Y Cf. A000045, A023173, A236395.

%K nonn

%O 1,3

%A _Hieronymus Fischer_, Aug 24 2007