login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132616
Column 0 of triangle A132615.
5
1, 1, 1, 6, 80, 1666, 47232, 1694704, 73552752, 3744491970, 218684051648, 14406896813608, 1056681951098592, 85379764462169382, 7534286318509305600, 720884741940337283712, 74330131862002429961712, 8215901579822006354547330, 969069489665924620416715008
OFFSET
0,4
COMMENTS
Triangle T = A132615 is generated by odd matrix powers of itself such that row n+1 of T = row n of T^(2n-1) with appended '1' for n >= 0 with T(0,0) = 1.
FORMULA
From Benedict W. J. Irwin, Nov 29 2016: (Start)
Conjecture: a(n) is described by a series of nested sums,
a(2) = Sum_{i=1..1} 1,
a(3) = Sum_{i=1..1+2} Sum_{j=1..i} 1,
a(4) = Sum_{i=1..1+4} Sum_{j=1..i+2} Sum_{k=1..j} 1,
a(5) = Sum_{i=1..1+6} Sum_{j=1..i+4} Sum_{k=1..j+2} Sum_{l=1..k} 1,
and so on, where 2, 4, 6,... are the even numbers. (End)
EXAMPLE
G.f. = 1 + x + x^2 + 6*x^3 + 80*x^4 + 1666*x^5 + 47232*x^6 + ...
MATHEMATICA
a[ n_, k_: 1] := a[n, k] = If[ n < 2, Boole[n >= 0], Sum[ a[n - 1, i], {i, k + 2 (n - 2)}]]; (* Michael Somos, Nov 29 2016 *)
PROG
(PARI) {a(n) = my(A = vector(n+1), p); A[1] = 1; for(j=1, n-1, p = (n-1)*(n-2) - (n-j-1)*(n-j-2); A = Vec((Polrev(A) + x * O(x^p)) / (1-x))); A = Vec((Polrev(A) + x * O(x^p)) / (1-x)); A[p+1]}
(PARI) {a(n, k=1) = if( n<2, n>=0, sum(i=1, k + 2*n-4, a(n-1, i)))}; /* Michael Somos, Nov 29 2016 */
CROSSREFS
Cf. A132615 (triangle).
Other columns: A132617, A132618, A132619.
Sequence in context: A337564 A177776 A349528 * A349657 A323694 A077393
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 24 2007
STATUS
approved