Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Dec 31 2023 10:19:27
%S 0,2,24,242,2400,23762,235224,2328482,23049600,228167522,2258625624,
%T 22358088722,221322261600,2190864527282,21687323011224,
%U 214682365584962,2125136332838400,21036680962799042,208241673295152024
%N X-values of solutions to the equation X*(X + 1) - 6*Y^2 = 0.
%C Or, 3*A000217(X) is a square, (3*A004189(n))^2. - _Zak Seidov_, Apr 08 2009
%C "You can find an infinite number of [different] triangular numbers such that when multiplied together form a square number. For example, for every triangular number, T_n, there are an infinite number of other triangular numbers, T_m, such that T_n*T_m is a square. For example, T_2 * T_24 = 30^2." [Pickover] - _Robert G. Wilson v_, Apr 01 2010
%D Clifford A. Pickover, The Loom of God, Tapestries of Mathematics and Mysticism, Sterling, NY, 2009, page 33.
%H Seiichi Manyama, <a href="/A132596/b132596.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-11,1).
%F a(n) = 10*a(n-1) - a(n-2) + 4, a(0)=0, a(1)=2.
%F a(n) = (A001079(n) - 1)/2. - _Max Alekseyev_, Nov 13 2009
%F From _R. J. Mathar_, Apr 20 2010: (Start)
%F a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3) = 2*A098297(n).
%F G.f.: -2*x*(1+x) / ( (x-1)*(x^2-10*x+1) ). (End)
%F a(n) = 2*A098297(n) = (1/2)*(T(2*n,sqrt(3)) - 1), where T(n,x) is the n-th Chebyshev polynomial of the first kind. - _Peter Bala_, Dec 31 2012
%t LinearRecurrence[{11, -11, 1}, {0, 2, 24}, 19] (* _Jean-François Alcover_, Feb 26 2019 *)
%Y Cf. A007654, A001079, A000217, A098297, A108741 (Y^2), A004189 (Y).
%K nonn,easy
%O 0,2
%A _Mohamed Bouhamida_, Nov 14 2007