login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let df(n,k) = Product_{i=0..k-1} (n-i) be the descending factorial and let P(m,n) = df(n-1,m-1)^2*(2*n-m)/((m-1)!*m!). Sequence gives P(8,n).
1

%I #1 Dec 09 2007 03:00:00

%S 0,0,0,0,0,0,0,1,80,1944,25200,217800,1411344,7361640,32391216,

%T 124227675,425339200,1323786464,3797876160,10155802176,25539739200,

%U 60844672800,138154965696,300509773245,628886888784,1270898695000,2488029830000,4731583685400,8762192010000

%N Let df(n,k) = Product_{i=0..k-1} (n-i) be the descending factorial and let P(m,n) = df(n-1,m-1)^2*(2*n-m)/((m-1)!*m!). Sequence gives P(8,n).

%Y See A132458 for further information.

%K nonn

%O 1,9

%A Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007