The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132464 Let df(n,k) = Product_{i=0..k-1} (n-i) be the descending factorial and let P(m,n) = df(n-1,m-1)^2*(2*n-m)/((m-1)!*m!). Sequence gives P(6,n). 1
 0, 0, 0, 0, 0, 1, 48, 735, 6272, 37044, 169344, 640332, 2090880, 6073353, 16032016, 39078039, 89037312, 191456720, 391523328, 766192176, 1442244096, 2622518073, 4623197040, 7925786407, 13248326784, 21641442900, 34616067200, 54311107500, 83710972800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 LINKS Table of n, a(n) for n=1..29. Index entries for linear recurrences with constant coefficients, signature (12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1). FORMULA From Robert Israel, Jul 16 2020: (Start) a(n) = (n - 5)^2*(n - 4)^2*(n - 3)^2*(n - 2)^2*(n - 1)^2*(2*n - 6)/86400. G.f.: (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)*x^6/(1 - x)^12. (End) MAPLE seq((n - 5)^2*(n - 4)^2*(n - 3)^2*(n - 2)^2*(n - 1)^2*(2*n - 6)/86400, n=1..50); # Robert Israel, Jul 16 2020 CROSSREFS See A132458 for further information. Sequence in context: A361188 A186162 A102279 * A145155 A105948 A350378 Adjacent sequences: A132461 A132462 A132463 * A132465 A132466 A132467 KEYWORD nonn AUTHOR Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 06:20 EDT 2023. Contains 365781 sequences. (Running on oeis4.)