OFFSET
1,5
COMMENTS
More precisely: minimum value for X=2 of primitive GF(2)[X] polynomials of degree n with exactly 5 terms, or 0 if no such polynomial exists. Applications include maximum-length linear feedback shift registers with efficient implementation in both hardware and software. Proof is needed that there exists a primitive GF(2)[X] polynomial P[X] of degree n and exactly 5 terms for all n>4.
EXAMPLE
a(6)=91, or 1011011 in binary, representing the GF(2)[X] polynomial X^6+X^4+X^3+X^1+1, because it has degree 6 and exactly 5 terms and is primitive, contrary to X^6+X^3+X^2+X^1+1 and X^6+X^4+X^2+X^1+1.
CROSSREFS
KEYWORD
nonn
AUTHOR
Francois R. Grieu (f(AT)grieu.com), Aug 22 2007
STATUS
approved