Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #57 Dec 12 2023 09:16:45
%S 3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,
%T -3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,
%U -1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1,-1,-3,3,1
%N Period 4: repeat [3, 1, -1, -3].
%C Nonsimple continued fraction expansion of (7 + 3*sqrt(5))/2 = 6.85410196624... = 1 + A090550. - _R. J. Mathar_, Mar 08 2012
%C Pisano period lengths: 1, 1, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ... . - _R. J. Mathar_, Aug 10 2012
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,-1).
%F G.f.: (3 + 4*x + 3*x^2)/((1+x)*(1+x^2)). - _Jaume Oliver Lafont_, Aug 30 2009
%F a(n) = (-1)^n + 2(-1)^((2n + (-1)^n - 1)/4). - _Brad Clardy_, Mar 10 2013
%F a(n) = 3 - 2*(n mod 4). - _Joerg Arndt_, Mar 10 2013
%F a(n) = (-1)^n + 2(-1)^floor(n/2). - _Wesley Ivan Hurt_, Apr 17 2014
%F From _Wesley Ivan Hurt_, Jul 10 2016: (Start)
%F a(n) + a(n-1) + a(n-2) + a(n-3) = 0 for n>2, a(n) = a(n-4) for n>3.
%F a(n) = 2*cos(n*Pi/2) + cos(n*Pi) + 2*sin(n*Pi/2). (End)
%p A132429:=n->3 - 2 * (n mod 4); seq(A132429(n), n=0..100); # _Wesley Ivan Hurt_, Apr 18 2014
%t PadRight[{}, 104, {3,1,-1,-3}] (* _Harvey P. Dale_, Nov 12 2011 *)
%o (PARI) a(n)=3-2*(n%4) \\ _Jaume Oliver Lafont_, Aug 28 2009
%o (Haskell)
%o a132429 = (3 -) . (* 2) . (`mod` 4)
%o a132429_list = cycle [3, 1, -1, -3] -- _Reinhard Zumkeller_, Aug 15 2015
%o (Magma) &cat [[3, 1, -1, -3]^^30]; // _Wesley Ivan Hurt_, Jul 10 2016
%o (Python)
%o def A132429(n): return 3 - 2*(n & 3) # _Chai Wah Wu_, May 25 2022
%Y Cf. A084101 (1, 3, 3, 1), A090550.
%K sign,easy
%O 0,1
%A _Paul Curtz_, Nov 13 2007