login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132416
Positive numbers which are powers of their last digit.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 25, 32, 36, 64, 125, 216, 243, 512, 625, 729, 1024, 1296, 3125, 7776, 8192, 15625, 16384, 16807, 19683, 32768, 46656, 59049, 78125, 131072, 262144, 279936, 390625, 1594323, 1679616, 1953125, 2097152, 4194304, 4782969
OFFSET
1,2
COMMENTS
Subsequence of A100753.
1, 5^k or 6^k for all k, 4^k or 9^k for all odd k, 2^k or 3^k or 7^k or 8^k for all k == 1 (mod 4). - Robert Israel, Apr 25 2017
LINKS
EXAMPLE
9=9^1, 25=5^2, 32=2^5, 36=6^2, 64=4^3, 125=5^3, 216=6^3, 243=3^5, 512=2^9, 625=5^4, etc.
MAPLE
N:= 10^9: # to get all terms <= N
S:= {1, seq(2^k, k=1..ilog2(N), 4), seq(3^k, k=1..floor(log[3](N)), 4),
seq(4^k, k=1..floor(log[4](N)), 2), seq(5^k, k=1..floor(log[5](N))),
seq(6^k, k=1..floor(log[6](N))), seq(7^k, k=1..floor(log[7](N)), 4),
seq(8^k, k=1..floor(log[8](N)), 4), seq(9^k, k=1..floor(log[9](N)), 2)}:
sort(convert(S, list)); # Robert Israel, Apr 25 2017
MATHEMATICA
pldQ[n_]:=Module[{idn=IntegerDigits[n], lst}, lst=Last[idn]; lst>1&& IntegerQ[ Log[ lst, n]]]; Join[{1}, Select[Range[5*10^6], pldQ]] (* Harvey P. Dale, Jul 26 2014 *)
CROSSREFS
Cf. A100753.
Sequence in context: A096867 A100753 A359494 * A128606 A085123 A131571
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Nov 13 2007
STATUS
approved