OFFSET
1,2
COMMENTS
Subsequence of A100753.
1, 5^k or 6^k for all k, 4^k or 9^k for all odd k, 2^k or 3^k or 7^k or 8^k for all k == 1 (mod 4). - Robert Israel, Apr 25 2017
LINKS
Robert Israel, Table of n, a(n) for n = 1..5993
EXAMPLE
9=9^1, 25=5^2, 32=2^5, 36=6^2, 64=4^3, 125=5^3, 216=6^3, 243=3^5, 512=2^9, 625=5^4, etc.
MAPLE
N:= 10^9: # to get all terms <= N
S:= {1, seq(2^k, k=1..ilog2(N), 4), seq(3^k, k=1..floor(log[3](N)), 4),
seq(4^k, k=1..floor(log[4](N)), 2), seq(5^k, k=1..floor(log[5](N))),
seq(6^k, k=1..floor(log[6](N))), seq(7^k, k=1..floor(log[7](N)), 4),
seq(8^k, k=1..floor(log[8](N)), 4), seq(9^k, k=1..floor(log[9](N)), 2)}:
sort(convert(S, list)); # Robert Israel, Apr 25 2017
MATHEMATICA
pldQ[n_]:=Module[{idn=IntegerDigits[n], lst}, lst=Last[idn]; lst>1&& IntegerQ[ Log[ lst, n]]]; Join[{1}, Select[Range[5*10^6], pldQ]] (* Harvey P. Dale, Jul 26 2014 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Nov 13 2007
STATUS
approved