The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132376 Algorithmic drum function based on two bar 16 notes per bar: Funk drum : Based on Andy Newark "In Time" from Sly Stone's "Fresh" 1973. 0
 5, 5, 2, 5, 2, 3, 5, 5, 2, 5, 2, 5, 2, 3, 3, 3, 5, 2, 4, 1, 3, 5, 2, 5, 5, 2, 2, 5, 5, 3, 3, 2, 5, 5, 2, 5, 2, 3, 5, 5, 2, 5, 2, 5, 2, 3, 3, 3, 5, 2, 4, 1, 3, 5, 2, 5, 5, 2, 2, 5, 5, 3, 3, 2, 5, 5, 2, 5, 2, 3, 5, 5, 2, 5, 2, 5, 2, 3, 3, 3, 5, 2, 4, 1, 3, 5, 2, 5, 5, 2, 2, 5, 5, 3, 3, 2, 5, 5, 2, 5, 2, 3, 5, 5, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The functions are sequences of drum choices: A-> Bass drum (1) B-> Snare Drum (2) C-> High hat closed with foot (3) D-> Open high hat struck with stick (4) E-> Closed High hat Struck with stick. REFERENCES Mark C. Gridley, Jazz Styles; History and Analysis, Courier Kendallville, 7th edition, ISBN 0-13-021227-X, 2000, page 447. LINKS FORMULA First "or" choice Function: f(n)=If[Mod[n, 32] == 0 || Mod[n, 32] == 3 || Mod[n, 32] == 5 || Mod[n, 32] == 11 ||Mod[n, 32] == 9 || Mod[n, 32] == 13 || Mod[n, 32] == 18 || Mod[n, 32] == 23 || Mod[n, 32] == 26 || Mod[n, 32] == 27, 2, g(n)]; Second Function: g(n)=If[Mod[n, 32] == 6 || Mod[n, 32] == 9 || Mod[n, 32] == 14 || Mod[n, 32] == 15 || Mod[n, 32] == 16 || Mod[n, 32] == 21 || Mod[n, 32] == 26 || Mod[n, 32] == 30 || Mod[n, 32] == 31, 3, h(n)]; Third Function: h(n)=If[Mod[n, 32] == 20, 1, k(n)]; Last Function: k(n)=If[Mod[n, 32] == 19, 4, 5] MATHEMATICA (*Funk drum : Based on Andy Newark "In Time" from Sly Stone's Fresh 1973"*) (* Page 447 : Mark C. Gridley, "Jazz Styles; History and Analysis", 7th edition, ISBN 0 - 13 - 021227 - x, 200, Courier Kendallville*) (*A*) f[n_] = If[Mod[n, 32] == 0 || Mod[n, 32] == 3 || Mod[n, 32] == 5 || Mod[n, 32] == 11 || Mod[n, 32] == 9 || Mod[n, 32] == 13 || Mod[n, 32] == 18 || Mod[n, 32] == 23 || Mod[n, 32] == 26 || Mod[n, 32] == 27, 2, g[n]]; (*B*) g[n_] = If[ Mod[n, 32] == 6 || Mod[n, 32] == 9 || Mod[n, 32] == 14 || Mod[n, 32] == 15 || Mod[ n, 32] == 16 || Mod[n, 32] == 21 || Mod[n, 32] == 26 || Mod[n, 32] == 30 || Mod[n, 32] == 31, 3, h[n]]; (*C*) h[n_] = If[Mod[n, 32] == 20, 1, k[n]]; (*D*) k[n_] = If[Mod[n, 32] == 19, 4, 5]; a = Table[f[n], {n, 1, 256}] CROSSREFS Sequence in context: A247039 A011335 A021185 * A273007 A316168 A019602 Adjacent sequences:  A132373 A132374 A132375 * A132377 A132378 A132379 KEYWORD nonn,uned AUTHOR Roger L. Bagula, Nov 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 14:09 EST 2021. Contains 349445 sequences. (Running on oeis4.)