Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Aug 06 2024 05:10:53
%S 2,2,2,4,4,6,9,1,3,8,2,7,4,1,0,1,2,6,4,2,5,2,1,5,6,1,3,4,1,8,8,8,1,1,
%T 6,0,7,4,9,5,0,1,4,9,3,5,1,5,5,1,8,5,6,7,1,5,7,5,9,1,6,4,7,4,0,6,6,5,
%U 0,6,9,3,8,9,7,6,2,8,2,2,0,8,7,5,2,9,4,4,4,4,5,2,8,4,2,7,0,4,7,1,1,2,9,4,8
%N Decimal expansion of Product_{k>=0} (1+1/10^k).
%C Twice the constant A132326.
%H G. C. Greubel, <a href="/A132325/b132325.txt">Table of n, a(n) for n = 1..1200</a>
%H Richard J. McIntosh, <a href="https://doi.org/10.1112/jlms/51.1.120">Some Asymptotic Formulae for q-Hypergeometric Series</a>, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; <a href="https://citeseerx.ist.psu.edu/pdf/4f03a5e304ec19f8a725774525aecd2a78f4ad81">alternative link</a>.
%F Equals lim sup_{n->oo} Product_{0<=k<=floor(log_10(n))} (1+1/floor(n/10^k)).
%F Equals lim sup_{n->oo} A132271(n)/n^((1+log_10(n))/2).
%F Equals lim sup_{n->oo} A132272(n)/n^((log_10(n)-1)/2).
%F Equals 2*exp(Sum_{n>0} 10^(-n)*Sum_{k|n} -(-1)^k/k) = 2*exp(Sum_{n>0} A000593(n)/(n*10^n)).
%F Equals lim sup_{n->oo} A132271(n+1)/A132271(n).
%F Equals 2*(-1/10; 1/10)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - _G. C. Greubel_, Dec 02 2015
%F Equals sqrt(2) * exp(log(10)/24 + Pi^2/(12*log(10))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(10))) (McIntosh, 1995). - _Amiram Eldar_, May 20 2023
%e 2.22446913827410126425215613418881160749501...
%t digits = 105; NProduct[1+1/10^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 18 2014 *)
%t 2*N[QPochhammer[-1/10,1/10]] (* _G. C. Greubel_, Dec 02 2015 *)
%o (PARI) prodinf(x=0, 1+(1/10)^x) \\ _Altug Alkan_, Dec 03 2015
%Y Cf. A081845, A067080, A100220, A132019-A132026, A132034-A132038, A132323-A132326, A132271, A132272, A000593.
%K nonn,cons
%O 1,1
%A _Hieronymus Fischer_, Aug 20 2007