login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of a Ramanujan q-series.
1

%I #8 Dec 13 2022 09:47:20

%S 1,-1,0,0,0,0,-1,1,-1,1,-1,2,-2,2,-2,2,-2,2,-2,2,-2,2,-1,1,-1,0,1,-1,

%T 1,-2,3,-4,4,-5,7,-8,8,-9,11,-12,12,-13,15,-16,16,-17,19,-20,19,-20,

%U 22,-22,21,-21,22,-22,20,-19,20,-19,16,-14,14,-12,8,-5,3,0,-5,10,-13,17,-24,30,-34,40,-48,55,-61,68,-77,86,-93,101

%N Coefficients of a Ramanujan q-series.

%D S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 10

%F G.f.: Sum_{k>=0} (-1)^k * x^(k*(k + 1)/2) / (x^2; x^2)_n.

%e G.f. = 1 - x - x^6 + x^7 - x^8 + x^9 - x^10 + 2*x^11 - 2*x^12 + 2*x^13 - 2*x^14 + ...

%t a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^(k (k + 1)/2) / QPochhammer[ x^2, x^2, k], {k, 0, Sqrt[8 n + 1]}], {x, 0, n}]]; (* _Michael Somos_, Nov 01 2015 *)

%o (PARI) {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = -t * x^k / (1 - x^(2*k)) + x * O(x^n), 1), n))};

%Y Convolution with A015128 is A143184. - _Michael Somos_, Dec 13 2022

%K sign

%O 0,12

%A _Michael Somos_, Aug 13 2007