Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Aug 29 2023 11:00:11
%S 1,2,3,6,7,8,9,12,17,18,19,22,23,24,25,32,33,38,39,42,43,44,45,48,57,
%T 58,63,66,67,68,69,76,77,78,79,90,91,92,93,96,97,98,99,102,107,108,
%U 109,116,129,138,139,142,143,148,149,152,153,154,155,158
%N Number of 3-term geometric progressions with no term exceeding n.
%C a(n) = number of pairs (i,j) in [1..n] X [1..n] with integral geometric mean sqrt(i*j). Cf. A000982, A362931. - _N. J. A. Sloane_, Aug 28 2023
%C Also the number of 2 X 2 symmetric singular matrices with entries from {1, ..., n} - cf. A064368.
%C Rephrased: Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2=x*y. See A211422. - _Clark Kimberling_, Apr 14 2012
%H Alois P. Heinz, <a href="/A132188/b132188.txt">Table of n, a(n) for n = 1..10000</a>
%H Gerry Myerson, <a href="https://austms.org.au/wp-content/uploads/Gazette/2008/Jul08/Gazette35(3)Web.pdf">Trifectas in Geometric Progression</a>, Australian Mathematical Society Gazette 35 (3) (2008) pp. 189--194 (pages 47--52 in PDF).
%F a(n) = Sum [sqrt(n/k)]^2, where the sum is over all squarefree k not exceeding n.
%F If we call A120486, this sequence and A132189 F(n), P(n) and S(n), respectively, then P(n) = 2 F(n) - n = S(n) + n. The Finch-Sebah paper cited at A000188 proves that F(n) is asymptotic to (3 / pi^2) n log n. In the reference, we prove that F(n) = (3 / pi^2) n log n + O(n), from which it follows that P(n) = (6 / pi^2) n log n + O(n) and similarly for S(n).
%F a(n) = Sum_{1 <=x,y <=n} A010052(x*y). - _Clark Kimberling_, Apr 14 2012
%F a(n) = n+2*Sum_{1<=x<y<=n} A010052(x*y). - _Chai Wah Wu_, Aug 28 2023
%e a(4) counts these six (w,x,y) - triples: (1,1,1), (2,1,4), (2,4,1), (2,2,2), (3,3,3), (4,4,4). - _Clark Kimberling_, Apr 14 2012
%p a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+
%p 1+2*add(`if`(issqr(i*n), 1, 0), i=1..n-1))
%p end:
%p seq(a(n), n=1..60); # _Alois P. Heinz_, Aug 28 2023
%t t[n_] := t[n] = Flatten[Table[w^2 - x*y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
%t c[n_] := Count[t[n], 0]
%t t = Table[c[n], {n, 0, 80}] (* _Clark Kimberling_, Apr 14 2012 *)
%o (Haskell)
%o a132188 0 = 0
%o a132188 n = a132345 n + (a120486 $ fromInteger n)
%o -- _Reinhard Zumkeller_, Apr 21 2012
%o (Python)
%o from sympy.ntheory.primetest import is_square
%o def A132188(n): return n+(sum(1 for x in range(1,n+1) for y in range(1,x) if is_square(x*y))<<1) # _Chai Wah Wu_, Aug 28 2023
%Y Cf. A057918, A064368, A120486, A132189, A132345, A211422, A338894.
%Y Cf. also A000982, A362931.
%K nonn
%O 1,2
%A _Gerry Myerson_, Nov 21 2007