login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A convolution triangle of numbers obtained from A036224.
4

%I #9 Aug 29 2019 16:30:50

%S 1,21,1,336,42,1,4536,1113,63,1,54432,23184,2331,84,1,598752,412272,

%T 65205,3990,105,1,6158592,6531840,1518048,139860,6090,126,1,60046272,

%U 94618368,30912840,4010769,256410,8631,147,1,560431872,1274921856

%N A convolution triangle of numbers obtained from A036224.

%C Signed version: (-1)^(n-m)*a(n, m) := s1(7; n,m).

%C a(n,m) := s1p(7; n,m), a member of a sequence of unsigned triangles including s1p(2; n,m)= A007318(n-1,m-1) (Pascal's triangle), A030523=s1p(3), A036068=s1p(4), A030526=s1p(5) and A030527=s1p(6).

%H W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

%H W. Lang, <a href="/A132166/a132166.txt">First ten rows</a>.

%F a(n, m) = 6*(6*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1.

%F G.f. for m-th column: ((1-(1-6*x)^6)/(36*(1-6*x)^6))^m.

%e {1};{21,1};{336,42,1};{4536,1113,63,1};...; Row polynomial s(3,x)=336*x+42*x^2+x^3.

%Y Related triangle A134141 (S1p(7)).

%Y Cf. A036224(n-1), n>=1 (first column). A132167 (row sums). A132168 (alternating row sums).

%K nonn,easy,tabl

%O 1,2

%A _Wolfdieter Lang_, Oct 12 2007