Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 06 2024 05:08:40
%S 8,7,6,5,6,0,3,5,4,0,3,5,9,6,4,2,0,5,8,3,6,0,1,9,8,3,8,4,1,7,8,6,2,0,
%T 1,0,1,0,6,6,3,5,1,0,1,1,7,4,6,7,1,8,3,3,6,1,4,9,3,5,2,8,0,1,5,8,7,0,
%U 8,5,4,2,3,1,7,1,8,2,9,9,6,9,9,0,4,4,4,7,7,7,6,9,2,0,7,9,1,9,6,4,5,0,9
%N Decimal expansion of Product_{k>0} (1-1/9^k).
%H Richard J. McIntosh, <a href="https://doi.org/10.1112/jlms/51.1.120">Some Asymptotic Formulae for q-Hypergeometric Series</a>, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; <a href="https://citeseerx.ist.psu.edu/pdf/4f03a5e304ec19f8a725774525aecd2a78f4ad81">alternative link</a>.
%F Equals exp(-Sum_{n>0} sigma_1(n)/(n*9^n)) = exp(-Sum_{n>0} A000203(n)/(n*9^n)).
%F Equals Sum_{n>=0} A010815(n)/9^n. - _R. J. Mathar_, Mar 04 2009
%F From _Amiram Eldar_, May 09 2023: (Start)
%F Equals sqrt(Pi/log(3)) * exp(log(3)/12 - Pi^2/(12*log(3))) * Product_{k>=1} (1 - exp(-2*k*Pi^2/log(3))) (McIntosh, 1995).
%F Equals Sum_{n>=0} (-1)^n/A027877(n). (End)
%e 0.8765603540359642058360198...
%t digits = 103; NProduct[1-1/9^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 18 2014 *)
%t RealDigits[QPochhammer[1/9], 10, 100][[1]] (* _Amiram Eldar_, May 09 2023 *)
%o (PARI) prodinf(k=1, 1 - 1/(9^k)) \\ _Amiram Eldar_, May 09 2023
%Y Cf. A010815, A027877, A048651, A100220, A132025, A132026, A132038, A098844, A067080, A000203.
%K nonn,cons
%O 0,1
%A _Hieronymus Fischer_, Aug 14 2007