Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 May 09 2023 09:59:02
%S 4,5,0,7,1,2,6,2,5,2,2,6,0,3,9,1,3,0,8,3,0,0,0,0,7,8,9,5,8,3,5,2,7,1,
%T 5,5,6,0,4,4,6,7,8,5,0,0,5,4,0,0,8,5,4,7,4,3,9,0,4,5,8,3,4,8,9,2,4,4,
%U 0,9,6,0,7,5,4,0,6,2,9,4,0,7,8,2,4,3,5,3,4,5,3,1,8,6,0,8,9,6,2,6,9,2,7
%N Decimal expansion of Product_{k>=0} (1 - 1/(2*6^k)).
%H G. C. Greubel, <a href="/A132022/b132022.txt">Table of n, a(n) for n = 0..2000</a>
%F Equals lim inf_{n->oo} Product_{k=0..floor(log_6(n))} floor(n/6^k)*6^k/n.
%F Equals lim inf_{n->oo} A132030(n)/n^(1+floor(log_6(n)))*6^(1/2*(1+floor(log_6(n)))*floor(log_6(n))).
%F Equals lim inf_{n->oo} A132030(n)/n^(1+floor(log_6(n)))*6^A000217(floor(log_6(n))).
%F Equals (1/2)*exp(-Sum_{n>0} 6^(-n)*Sum{k|n} 1/(k*2^k)).
%F Equals lim inf_{n->oo} A132030(n)/A132030(n+1).
%F Equals (1/2)*(1/12; 1/6)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - _G. C. Greubel_, Dec 20 2015
%F Equals Product_{n>=1} (1 - 1/A167747(n)). - _Amiram Eldar_, May 09 2023
%e 0.45071262522603913...
%t digits = 103; NProduct[1-1/(2*6^k), {k, 0, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 18 2014 *)
%t (1/2)*N[QPochhammer[1/12, 1/6], 200] (* _G. C. Greubel_, Dec 20 2015 *)
%o (PARI) prodinf(x=0, 1-1/(2*6^x)) \\ _Altug Alkan_, Dec 20 2015
%Y Cf. A000217, A048651, A098844, A067080, A132019, A132026, A132030, A132034, A167747.
%K nonn,cons
%O 0,1
%A _Hieronymus Fischer_, Aug 14 2007