login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n + 2)*(5*n + 1)/2.
2

%I #30 Oct 23 2024 14:40:05

%S 1,9,22,40,63,91,124,162,205,253,306,364,427,495,568,646,729,817,910,

%T 1008,1111,1219,1332,1450,1573,1701,1834,1972,2115,2263,2416,2574,

%U 2737,2905,3078,3256,3439,3627,3820,4018,4221,4429,4642,4860,5083,5311,5544

%N a(n) = (n + 2)*(5*n + 1)/2.

%C Row sums of triangle A131894.

%C Binomial transform of (1, 8, 5, 0, 0, 0, ...).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = a(n-1) + 5*n + 3 (with a(0)=1). - _Vincenzo Librandi_, Nov 23 2010

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=9, a(2)=22. - _Harvey P. Dale_, Sep 11 2015

%F From _Elmo R. Oliveira_, Oct 22 2024: (Start)

%F G.f.: (1 + 6*x - 2*x^2)/(1 - x)^3.

%F E.g.f.: (1 + 8*x + 5*x^2/2)*exp(x). (End)

%e a(2) = 22 = sum of row 2 terms of triangle A131894: (11 + 6 + 5).

%e a(2) = 22 = (1, 2, 1) dot (1, 8, 5) = (1 + 16 + 5).

%p A131895:=n->(n+2)*(5*n+1)/2; seq(A131895(n), n=0..50); # _Wesley Ivan Hurt_, Mar 26 2014

%t LinearRecurrence[{3,-3,1},{1,9,22},50] (* _Harvey P. Dale_, Sep 11 2015 *)

%o (PARI) a(n)=(n+2)*(5*n+1)/2 \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Cf. A131894.

%K nonn,easy

%O 0,2

%A _Gary W. Adamson_, Jul 24 2007

%E More terms from _Vladimir Joseph Stephan Orlovsky_, Dec 04 2008

%E Simpler definition from _Wesley Ivan Hurt_, Mar 26 2014