Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Apr 20 2017 08:49:59
%S 1,5,55,755,11605,191105,3296755,58810055,1075986505,20079780605,
%T 380733295855,7314056109755,142049912523805,2784519380488505,
%U 55019843803653355,1094695713838691855,21912997682690751505,440999873506064578805,8917597017732200569255
%N Expansion of series reversion of x*(1-6*x)/(1-x).
%C The Hankel transform of this sequence is 30^C(n+1,2).
%H G. C. Greubel, <a href="/A131846/b131846.txt">Table of n, a(n) for n = 1..745</a>
%F a(n) = Sum_{k=0..n} A086810(n,k)*5^k .
%F Recurrence: n*a(n) = 11*(2*n-3)*a(n-1) - (n-3)*a(n-2). - _Vaclav Kotesovec_, Aug 20 2013
%F a(n) ~ sqrt(11*sqrt(30)-60) * (11+2*sqrt(30))^n/(12*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Aug 20 2013
%F From _Ilya Gutkovskiy_, Apr 20 2017: (Start)
%F G.f.: (1 + x - sqrt(1 - 22*x + x^2))/12.
%F G.f.: x/(1 - 5*x/(1 - 6*x/(1 - 5*x/(1 - 6*x/(1 - 5*x/(1 - ...)))))), a continued fraction. (End)
%t Rest[CoefficientList[InverseSeries[Series[x*(1-6*x)/(1-x),{x,0,20}],x],x]] (* _Vaclav Kotesovec_, Aug 20 2013 *)
%o (PARI) Vec(serreverse(x*(1-6*x)/(1-x)+O(x^66))) /* _Joerg Arndt_, Feb 06 2013 */
%K nonn
%O 1,2
%A _Philippe Deléham_, Oct 29 2007
%E More terms from _Philippe Deléham_, Feb 06 2013
%E Offset corrected, _Joerg Arndt_, Feb 15 2013