login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^(n+1) - 1 + 3*n.
2

%I #29 Mar 30 2023 05:13:42

%S 1,6,13,24,43,78,145,276,535,1050,2077,4128,8227,16422,32809,65580,

%T 131119,262194,524341,1048632,2097211,4194366,8388673,16777284,

%U 33554503,67108938,134217805,268435536,536870995,1073741910,2147483737,4294967388,8589934687,17179869282

%N a(n) = 2^(n+1) - 1 + 3*n.

%C Binomial transform of (1, 5, 2, 2, 2, ...).

%H Vincenzo Librandi, <a href="/A131833/b131833.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2).

%F G.f.: (-1 - 2*x + 6*x^2)/((2*x - 1)*(x - 1)^2). - _R. J. Mathar_, Apr 04 2012

%F a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - _Vincenzo Librandi_, Jul 05 2012

%F E.g.f.: exp(x)*(2*exp(x) - 1 + 3*x). - _Stefano Spezia_, Mar 29 2023

%e a(3) = 24 = sum of row 3 terms of triangle A131832: (7 + 5 + 5 + 7).

%e a(3) = 24 = (1, 3, 3, 1) dot (1, 5, 2, 2) = (1 + 15 + 6 + 2).

%t CoefficientList[Series[(-1-2*x+6*x^2)/((2*x-1)*(x-1)^2),{x,0,40}],x] (* _Vincenzo Librandi_, Jul 05 2012 *)

%t Table[2^(n+1)-1+3n,{n,0,30}] (* or *) LinearRecurrence[{4,-5,2},{1,6,13},40] (* _Harvey P. Dale_, Nov 06 2012 *)

%o (Magma) I:=[1, 6, 13]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Jul 05 2012

%Y Row sums of triangle A131832.

%K nonn,easy

%O 0,2

%A _Gary W. Adamson_, Jul 20 2007

%E New definition by _R. J. Mathar_, Apr 04 2012