login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts that are squares or cubes.
8

%I #26 Aug 01 2020 12:02:36

%S 1,1,1,1,2,2,2,2,4,5,5,5,7,8,8,8,12,14,15,15,19,21,22,22,28,33,35,37,

%T 43,48,50,52,61,69,74,78,90,98,103,107,122,135,143,152,170,186,194,

%U 203,225,247,261,275,305,330,348,362,396,429,454,477,519,561,590,618,666,717

%N Number of partitions of n into parts that are squares or cubes.

%C a(n) = A078635(n) for n < 32 = 2^5.

%H Vaclav Kotesovec, <a href="/A131799/b131799.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: Product_{k>=1} (1 - x^(k^6)) / ((1 - x^(k^2)) * (1 - x^(k^3))). - _Vaclav Kotesovec_, Jan 12 2017

%e a(10) = #{9+1, 8+1+1, 4+4+1+1, 4+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1} = 5.

%t nmax = 65; c2max = nmax^(1/2); c3max = nmax^(1/3);

%t s = Flatten[{Table[n^2, {n, 1, c2max}]}~Join~{Table[n^3, {n, 1, c3max}]}];

%t Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* _Robert Price_, Jul 31 2020 *)

%Y Cf. A000041, A001156, A002760, A003108, A078635.

%K nonn

%O 0,5

%A _Reinhard Zumkeller_, Jul 16 2007

%E a(0)=1 prepended by _Ilya Gutkovskiy_, Jan 11 2017