Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 26 2023 17:14:06
%S 0,0,2,3,1,1,5,6,2,2,8,9,3,3,11,12,4,4,14,15,5,5,17,18,6,6,20,21,7,7,
%T 23,24,8,8,26,27,9,9,29,30,10,10,32,33,11,11,35,36,12,12,38,39,13,13,
%U 41,42,14,14,44,45,15,15,47,48,16,16,50,51,17,17,53,54,18,18,56,57,19,19,59
%N a(4n) = a(4n+1) = n, a(4n+2) = 3n+2, a(4n+3) = 3n+3.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-3,4,-3,2,-1).
%F From _Chai Wah Wu_, Mar 20 2017: (Start)
%F a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 3*a(n-4) + 2*a(n-5) - a(n-6) for n > 5.
%F G.f.: x^2*(x^2 - x + 2)/((x - 1)^2*(x^2 + 1)^2). (End)
%F From _Luce ETIENNE_, Apr 08 2017: (Start)
%F a(n) = (4*n+2+(-1)^((2*n+1-(-1)^n)/4)-(2*n+3)*(-1)^((2*n-1+(-1)^n)/4))/8.
%F a(n) = (2*n+1-(n+1)*cos(n*Pi/2)-(n+2)*sin(n*Pi/2))/4. (End)
%t Table[Switch[Mod[n, 4], 0, n/4, 1, (n - 1)/4, 2, 3 (n - 2)/4 + 2, _, 3 (n - 3)/4 + 3], {n, 0, 78}] (* or *)
%t CoefficientList[Series[x^2*(x^2 - x + 2)/((x - 1)^2*(x^2 + 1)^2), {x, 0, 78}], x] (* _Michael De Vlieger_, Mar 20 2017 *)
%t LinearRecurrence[{2,-3,4,-3,2,-1},{0,0,2,3,1,1},100] (* _Harvey P. Dale_, Mar 26 2023 *)
%K nonn
%O 0,3
%A _Paul Curtz_, Sep 19 2007