Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 08 2022 08:45:31
%S 1,11,54266008005,94467113468457039310,538562285352301951109430061,
%T 102370328298891480707678565453456,
%U 2171004564341130364494477279762016705,10015112821822553484101305268477882115400,15057116321451208557735379863635553426467625,9594364176429126945241161642390324911313805168
%N a(n) = (Product_{i=1..10} n^i+i)/10!.
%C See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0: For k=10, A131685(k)=1, which implies that this is a well defined integer sequence. - _Alexander R. Povolotsky_, Apr 24 2015; corrected by _M. F. Hasler_, May 02 2015
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>
%t Table[x = 10; Product[(n^k) + k, {k, x}]/x!, {n, 0, 9}] (* _Michael De Vlieger_, Apr 24 2015 *)
%o (Magma) [((n+1)*(n^2+2)*(n^3+3)*(n^4+4)*(n^5+5)*(n^6+6)*(n^7+7)*(n^8+8)*(n^9+9)*(n^10+10))/Factorial(10): n in [0..10]]; // _Vincenzo Librandi_, Apr 25 2015
%o (PARI) A131680(n,k=10)=prod(i=1,k,(n^i+i))/k! \\ Changing the optional 2nd argument allows one to produce A000027 (k=1), A064808 (k=2), A131509 (k=3), A129995 (k=4), A131675(k=5), ..., A131679 (k=9). - _M. F. Hasler_, May 02 2015
%K nonn,easy
%O 0,2
%A _Alexander R. Povolotsky_, Sep 15 2007
%E Definition made explicit by _M. F. Hasler_, May 02 2015