login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: row n gives coefficients of the polynomial p(x, n) = Sum[Fibonacci[n]^i*x^(n - i), {i, 0, n}].
2

%I #6 Oct 13 2012 13:35:59

%S 1,1,1,1,1,1,8,4,2,1,81,27,9,3,1,3125,625,125,25,5,1,262144,32768,

%T 4096,512,64,8,1,62748517,4826809,371293,28561,2197,169,13,1,

%U 37822859361,1801088541,85766121,4084101,194481,9261,441,21,1,60716992766464

%N Triangle read by rows: row n gives coefficients of the polynomial p(x, n) = Sum[Fibonacci[n]^i*x^(n - i), {i, 0, n}].

%C Row sums give A131612.

%e Triangle begins:

%e {1},

%e {1, 1},

%e {1, 1, 1},

%e {8, 4, 2, 1},

%e {81, 27, 9, 3, 1},

%e {3125, 625, 125, 25, 5, 1},

%e {262144, 32768, 4096, 512, 64, 8, 1},

%e {62748517, 4826809, 371293, 28561, 2197, 169, 13, 1},

%e {37822859361, 1801088541, 85766121, 4084101, 194481, 9261, 441, 21, 1},

%e {60716992766464, 1785793904896, 52523350144, 1544804416, 45435424, 1336336, 39304, 1156, 34, 1},

%e {253295162119140625, 4605366583984375, 83733937890625, 1522435234375, 27680640625, 503284375, 9150625, 166375, 3025, 55, 1}

%t Clear[p, a] a[n_] = Fibonacci[n]; p[x, 0] = 1; p[x_, n_] := p[x, n] = Sum[a[n]^i*x^(n - i), {i, 0, n}]; Table[p[x, n], {n, 0, 10}]; a0 = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a0] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]

%Y Cf. A130321, A000045, A131609.

%K nonn,tabl

%O 0,7

%A _Roger L. Bagula_ and _Gary W. Adamson_, May 27 2008

%E Edited by _N. J. A. Sloane_, May 27 2008