%I #19 Aug 14 2024 14:46:28
%S 1,36,100,144,196,216,225,324,400,441,484,576,676,784,900,1000,1089,
%T 1156,1225,1296,1444,1521,1600,1728,1764,1936,2025,2116,2304,2500,
%U 2601,2704,2744,2916,3025,3136,3249,3364,3375,3600,3844,3969,4225,4356,4624
%N Perfect powers of nonprimes (m^k where m is a nonprime positive integer and k >= 2).
%C Although 1 is a square, is a cube, and so on..., 1 is sometimes excluded from perfect powers since it is not a well-defined power of 1 (1 = 1^k for any k in [2, 3, 4, 5, ...])
%H Daniel Forgues, <a href="/A131605/b131605.txt">Table of n, a(n) for n=1..8649</a>
%o (PARI) isok(n) = if (n == 1, return (1), return (ispower(n, ,&np) && (! isprime(np)))); \\ _Michel Marcus_, Jun 12 2013
%o (Python)
%o from sympy import mobius, integer_nthroot, primepi
%o def A131605(n):
%o def f(x): return int(n-2+x+sum(mobius(k)*((a:=integer_nthroot(x,k)[0])-1)+primepi(a) for k in range(2,x.bit_length())))
%o kmin, kmax = 1,2
%o while f(kmax) >= kmax:
%o kmax <<= 1
%o while True:
%o kmid = kmax+kmin>>1
%o if f(kmid) < kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o if kmax-kmin <= 1:
%o break
%o return kmax # _Chai Wah Wu_, Aug 14 2024
%Y Cf. A000961, A001597, A024619, A025475.
%K nonn
%O 1,2
%A _Daniel Forgues_, May 27 2008
%E _Klaus Brockhaus_ previously provided a table of n, a(n) for n=1..1323, May 28 2008