Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jul 06 2024 04:41:53
%S 4,13,87,1027,13275,155995,1789395,19523155,204330315,2081006083,
%T 20605602003,199966727443,1908356153955,17942429101363,
%U 166591116531123,1529578004981731,13917470067182067,125565110929591171,1124685106917162579,10009134886727192611
%N Sum of the squares of the first 2^n primes.
%H Amiram Eldar, <a href="/A131590/b131590.txt">Table of n, a(n) for n = 0..34</a> (terms 0..30 from Michael S. Branicky)
%F a(n) = A024450(2^n). - _Amiram Eldar_, Jul 06 2024
%e The sum of the squares of the first 2^2 primes is a(2) = 4 + 9 + 25 + 49 = 87.
%o (PARI) sumprimesq(n,b) = { local(x,y,s,a); for(y=0,n, s=0; for(x=1,b^y, s+=prime(x)^2; ); print1(s","); ) }
%o (PARI) lista(pmax) = {my(s = 0, k = 0, pow = 1); forprime(p = 1, pmax, k++; s += p^2; if(k == pow, print1(s, ", "); pow *= 2));} \\ _Amiram Eldar_, Jul 06 2024
%o (Python)
%o from sympy import sieve, prime
%o def a(n): return sum(p*p for p in sieve.primerange(1, prime(2**n)+1))
%o print([a(n) for n in range(20)]) # _Michael S. Branicky_, Apr 13 2021
%Y Cf. A024450, A099825.
%K nonn
%O 0,1
%A _Cino Hilliard_, Aug 30 2007
%E a(18) and beyond from _Michael S. Branicky_, Apr 13 2021