

A131564


Let spm(n) be the sum of all prime factors of n counted with multiplicities (A001414); sequence gives numbers n such that spm(n+spm(n)) divides both n and n+spm(n).


0



60, 70, 240, 2079, 2408, 2928, 3000, 3125, 4250, 6748, 15560, 19018, 19805, 22448, 24508, 28560, 29412, 31416, 33160, 39347, 43868, 44268, 46025, 53928, 55298, 70438, 78387, 80236, 81655, 91238, 94800, 96824, 106134, 117952
(list;
graph;
refs;
listen;
history;
text;
internal format)




