login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular numbers that are the sums of five consecutive triangular numbers.
9

%I #42 Mar 22 2024 18:48:14

%S 55,2485,17020,799480,5479705,257429395,1764447310,82891465030,

%T 568146553435,26690794309585,182941425758080,8594352876220660,

%U 58906570947547645,2767354935348742255,18967732903684582930,891079694829418784770,6107551088415488155135

%N Triangular numbers that are the sums of five consecutive triangular numbers.

%H Alois P. Heinz, <a href="/A131557/b131557.txt">Table of n, a(n) for n = 1..250</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,322,-322,-1,1).

%F The subsequences with odd indices and even indices satisfy the same recurrence relations: a(n+2) = 322*a(n+1) - a(n) - 680 and a(n+1) = 161*a(n) - 340 + 9*sqrt(320*a(n)^2 - 1360*a(n) - 175).

%F G.f.: -5*x*(11+486*x-635*x^2+2*x^4) / ( (x-1)*(x^2+18*x+1)*(x^2-18*x+1) ).

%F 8*a(n) = 17 + 45*A007805(n) + 18*(-1)^n*A049629(n). - _R. J. Mathar_, Apr 28 2020

%e a(1) = 55 = 3+6+10+15+21.

%p a:= n-> `if`(n<2, [0, 55][n+1], (<<0|1|0>, <0|0|1>, <1|-323|323>>^iquo(n-2, 2, 'r'). `if`(r=0, <<2485, 799480, 257429395>>, <<17020, 5479705, 1764447310>>))[1, 1]): seq(a(n), n=1..20); # _Alois P. Heinz_, Sep 25 2008, revised Dec 15 2011

%t LinearRecurrence[{1, 322, -322, -1, 1}, {55, 2485, 17020, 799480, 5479705}, 20] (* _Jean-François Alcover_, Oct 05 2019 *)

%Y Cf. A129803.

%K nonn,easy

%O 1,1

%A _Richard Choulet_, Oct 06 2007

%E More terms from _Alois P. Heinz_, Sep 25 2008

%E a(6) and a(8) corrected by _Harvey P. Dale_, Oct 02 2011

%E a(10), a(12), a(14) corrected at the suggestion of _Harvey P. Dale_ by _D. S. McNeil_, Oct 02 2011