login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n+2) = 34*a(n+1) - a(n) + 2; a(1) = 1 and a(2) = 16.
1

%I #19 Aug 05 2016 10:39:45

%S 1,16,545,18516,629001,21367520,725866681,24658099636,837649520945,

%T 28455425612496,966646821303921,32837536498720820,1115509594135203961,

%U 37894488664098213856,1287297104985204067145,43730207080832840069076,1485539743643331358281441

%N a(n+2) = 34*a(n+1) - a(n) + 2; a(1) = 1 and a(2) = 16.

%H Colin Barker, <a href="/A131515/b131515.txt">Table of n, a(n) for n = 1..650</a>

%H Chip Curtis, <a href="http://www.jstor.org/stable/27646512">Generating Heronian Triangles</a>, The College Mathematics Journal, vol. 38 (2007), pp. 315-316. See page 316.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1).

%F G.f.: -x*(1-19*x+20*x^2)/(-1+x)/(1-34*x+x^2). - _R. J. Mathar_, Nov 14 2007

%F a(1)=1, a(2)=16, a(3)=545, a(n) = 35*a(n-1)-35*a(n-2)+a(n-3). - _Harvey P. Dale_, Feb 10 2015

%F a(n) = (-6 + (963-680*sqrt(2))*(17+12*sqrt(2))^n + (17+12*sqrt(2))^(-n)*(963+680*sqrt(2)))/96. - _Colin Barker_, Mar 02 2016

%e If n=3 then a(3) = 34*a(2) - a(1) + 2 = 545 which is the third term in the sequence.

%t RecurrenceTable[{a[1]==1,a[2]==16,a[n]==34a[n-1]-a[n-2]+2},a,{n,20}] (* or *) LinearRecurrence[{35,-35,1},{1,16,545},20] (* _Harvey P. Dale_, Feb 10 2015 *)

%o (PARI) Vec(x*(1-19*x+20*x^2)/((1-x)*(1-34*x+x^2)) + O(x^20)) \\ _Colin Barker_, Mar 02 2016

%o (PARI) a(n)=([0,1,0;0,0,1;1,-35,35]^n*[20;1;16])[1,1] \\ _Charles R Greathouse IV_, Aug 05 2016

%Y Cf. A016064, A001110.

%K nonn,easy

%O 1,2

%A _Parthasarathy Nambi_, Aug 14 2007

%E Definition corrected by _Rick L. Shepherd_, Aug 17 2007

%E More terms from _Harvey P. Dale_, Feb 10 2015