login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131483 Meissel_Lehmer recursion: a(n,m) = a(n,m-1)-a(Floor[n/Prime[m]],m-1). 0

%I

%S 1,0,-1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,

%T 1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,

%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1

%N Meissel_Lehmer recursion: a(n,m) = a(n,m-1)-a(Floor[n/Prime[m]],m-1).

%H J. C. Lagarias, V. S. Miller and A. M. Odlyzko, <a href="https://doi.org/10.1090/S0025-5718-1985-0777285-5">Computing pi(x): The Meissel-Lehmer method</a>, Math. Comp., 44 (1985), pp. 537-560.

%F a(1,1) = 1; a(n,m) = a(n,m-1)-a(Floor[n/Prime[m]],m-1);

%e {1},

%e {0, -1},

%e {0, -1, -1},

%e {0, 0, 0, 0},

%e {0, 0, 0, 0, 0},

%e {0, 0, 1, 1, 1, 1},

%e {0, 0, 1, 1, 1, 1, 1},

%e {0, 0, 1, 1, 1, 1, 1, 1},

%e {0, 0, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

%e {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

%e {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

%e {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

%Y Cf. A000720, A006880, A007053, A075986, A059305.

%K tabl,sign

%O 1,1

%A _Roger L. Bagula_, Oct 01 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 08:54 EDT 2021. Contains 343636 sequences. (Running on oeis4.)