login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Meissel_Lehmer recursion: a(n,m) = a(n,m-1)-a(Floor[n/Prime[m]],m-1).
0

%I #7 Oct 11 2017 18:13:11

%S 1,0,-1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,

%T 1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,

%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1

%N Meissel_Lehmer recursion: a(n,m) = a(n,m-1)-a(Floor[n/Prime[m]],m-1).

%H J. C. Lagarias, V. S. Miller and A. M. Odlyzko, <a href="https://doi.org/10.1090/S0025-5718-1985-0777285-5">Computing pi(x): The Meissel-Lehmer method</a>, Math. Comp., 44 (1985), pp. 537-560.

%F a(1,1) = 1; a(n,m) = a(n,m-1)-a(Floor[n/Prime[m]],m-1);

%e {1},

%e {0, -1},

%e {0, -1, -1},

%e {0, 0, 0, 0},

%e {0, 0, 0, 0, 0},

%e {0, 0, 1, 1, 1, 1},

%e {0, 0, 1, 1, 1, 1, 1},

%e {0, 0, 1, 1, 1, 1, 1, 1},

%e {0, 0, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

%e {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

%e {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

%e {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

%e {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

%Y Cf. A000720, A006880, A007053, A075986, A059305.

%K tabl,sign

%O 1,1

%A _Roger L. Bagula_, Oct 01 2007