Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #71 Sep 22 2024 02:02:04
%S 1,8,25,56,105,176,273,400,561,760,1001,1288,1625,2016,2465,2976,3553,
%T 4200,4921,5720,6601,7568,8625,9776,11025,12376,13833,15400,17081,
%U 18880,20801,22848,25025,27336,29785,32376,35113,38000,41041,44240,47601,51128
%N a(n) = n*(n+2)*(2*n-1)/3. Also, row sums of triangle A131422.
%C The Wiener index of the P_2 X P_n grid, where P_m is the path graph on m vertices. The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. - _Emeric Deutsch_, Sep 05 2008
%D L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)
%H Michael De Vlieger, <a href="/A131423/b131423.txt">Table of n, a(n) for n = 1..10000</a>
%H Éva Czabarka, Peter Dankelmann, Trevor Olsen, and László A. Székely, <a href="https://arxiv.org/abs/1905.06753">Wiener Index and Remoteness in Triangulations and Quadrangulations</a>, arXiv:1905.06753 [math.CO], 2019.
%H B. E. Sagan, Y-N. Yeh, and P. Zhang, <a href="https://doi.org/10.1002/(SICI)1097-461X(1996)60:5%3C959::AID-QUA2%3E3.0.CO;2-W">The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., 60, 1996, 959-969.
%H D. P. Walsh, <a href="http://www.mtsu.edu/~dwalsh/WIENER.pdf">Notes on the Wiener index for a simple grid graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WienerIndex.html">Wiener Index</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = n*(n+2)*(2*n-1)/3. - _Emeric Deutsch_, Sep 06 2008
%F a(n) = Sum_{k=1..n} k*A143370(n,k). - _Emeric Deutsch_, Sep 05 2008
%F From _Dennis P. Walsh_, Dec 04 2009: (Start)
%F a(n) = a(n-1) + 2*n^2 - 1.
%F G.f.: x*(1+4*x-x^2)/(1-x)^4. (End)
%F a(1)=0, a(2)=1, a(3)=8, a(4)=25; for n>4, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Harvey P. Dale_, Feb 03 2012
%F a(n) = Sum_{i=1..n} (A005408(i)*A005408(i-1)-1)/2. - _Bruno Berselli_, Jan 09 2017
%F a(n) = (1/2)*trinomial(2*n, 3) = (1/2)*trinomial(2*n, 4*n-3), for n >= 1, with the trinomial irregular triangle A027907. a(n) = (1/(2*Pi))*Integral_{x=0..2} (1/sqrt(4 - x^2))*(x^2 - 1)^(2*n)*R(2*(2*n-3), x), with the R polynomial coefficients given in A127672 and R(-m, x) = R(m, x) [Comtet, p. 77, the integral formula for q = 3, n -> 2*n, k = 3, rewritten with x = 2*cos(phi)]. For the odd numbered rows of column k=3 see A030440. - _Wolfdieter Lang_, Apr 27 2018
%F From _Vaclav Kotesovec_, Apr 28 2018: (Start)
%F Sum_{n>=1} 1/a(n) = 12*log(2)/5 - 9/20.
%F Sum_{n>=1} (-1)^n/a(n) = 3/20 - 3*Pi/5 + 6*log(2)/5. (End)
%F E.g.f.: exp(x)*x*(3 + 9*x + 2*x^2)/3. - _Stefano Spezia_, Jan 20 2024
%e a(3) = 25 = sum of row 3 terms, triangle A131422: (6 + 8 + 11).
%e For n=2, the Wiener index is a(2)=8 since there are 4 vertex pairs with distances of 1 and 2 vertex pairs with distances of 2. - _Dennis P. Walsh_, Dec 04 2009
%p seq((1/3)*n*(n+2)*(2*n-1), n=1..43); # _Emeric Deutsch_, Sep 06 2008
%t Table[Sum[2 k^2 - 1, {k, n}], {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 8, 25}, 50] (* _Harvey P. Dale_, Feb 03 2012 *)
%t Table[n (n + 2) (2 n - 1)/3, {n, 50}] (* _Wesley Ivan Hurt_, Apr 07 2015 *)
%o (Magma) [n*(n+2)*(2*n-1)/3: n in [1..45]]; // _Vincenzo Librandi_, Nov 02 2014
%Y Cf. A005408, A027907, A030440, A056220, A127672, A131422.
%K nonn,easy
%O 1,2
%A _Gary W. Adamson_, Jul 10 2007
%E More terms from _Emeric Deutsch_, Sep 06 2008
%E Definition edited by _M. F. Hasler_, Jan 13 2015