login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').
10

%I #48 Sep 29 2024 04:06:40

%S 1,1,2,6,16,60,144,672,1536,6480,19200,76032,165888,1048320,2257920,

%T 8294400,28311552,126904320,268738560,1470873600,3096576000,

%U 16094453760,51385466880,175814737920,366917713920,2717245440000,6782244618240,22754631352320,69918208819200

%N Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').

%C From _R. J. Mathar_, Dec 05 2012: (Start)

%C a(n) = b(n-1) because a(n) = Product_{k=1..n} ceiling(n/k) = Product_{k=1..n-1} ceiling(n/k) = n*Product_{k=2..n-1} ceiling(n/k) = Product_{k=1..1} (1+(n-1)/k)*Product_{k=2..n-1} ceiling(n/k).

%C The cases of the product are (i) k divides n but does not divide n-1, ceiling(n/k) = n/k = 1 + floor((n-1)/k), (ii) k does not divide n but divides n-1, ceiling(n/k) = 1 + (n-1)/k = 1 + floor((n-1)/k) and (iii) k divides neither n nor n-1, ceiling(n/k) = 1 + floor((n-1)/k).

%C In all cases, including k=1, a(n) = Product_{k=1..n-1} (1+floor((n-1)/k)) = Product_{k=1..n-1} floor(1+(n-1)/k) = b(n-1).

%C (End)

%C a(n) is the number of functions f:D->{1,2,..,n-1} where D is any subset of {1,2,..,n-1} and where f(x) == 0 (mod x) for every x in D. - _Dennis P. Walsh_, Nov 13 2015

%H G. C. Greubel, <a href="/A131385/b131385.txt">Table of n, a(n) for n = 0..1000</a>

%H D. P. Walsh, <a href="http://capone.mtsu.edu/dwalsh/FINITEF.pdf">Notes on finite functions from subsets of {1,2,...,n} into {1,2,...,n}</a>

%F a(n) = Product_{k=1..n} ceiling(n/k).

%F Formulas from _Paul D. Hanna_, Nov 26 2012: (Start)

%F a(n) = Product_{k=1..n-1} floor((n+k-1)/k) for n>1.

%F a(n) = Product_{k=1..n-1} ((k+1)/k)^floor((n-1)/k) for n>1.

%F Limits: Let L = limit a(n+1)/a(n) = 3.51748725590236964939979369932386417..., then

%F (1) L = 2 * exp( Sum_{n>=1} log((n+1)/n)) / n ) ;

%F (2) L = 2 * exp( Sum_{n>=1} (-1)^(n+1) * Sum_{k>=2} 1/(n*k^(n+1)) ) ;

%F (4) L = exp( Sum_{n>=1} (-1)^(n+1) * zeta(n+1)/n ) ;

%F (5) L = exp( Sum_{n>=1} log(n+1) / (n*(n+1)) ) = exp(c) where c = constant A131688.

%F Compare L to Alladi-Grinstead constant defined by A085291 and A085361.

%F (End)

%F a(n) = A308820(n)/A092143(n-1) for n > 0. - _Ridouane Oudra_, Sep 28 2024

%e From _Paul D. Hanna_, Nov 26 2012: (Start)

%e Illustrate initial terms using formula involving the floor function []:

%e a(1) = 1;

%e a(2) = [2/1] = 2;

%e a(3) = [3/1]*[4/2] = 6;

%e a(4) = [4/1]*[5/2]*[6/3] = 16;

%e a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60;

%e a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144.

%e Illustrate another alternative generating method:

%e a(1) = 1;

%e a(2) = (2/1)^[1/1] = 2;

%e a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6;

%e a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16;

%e a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60.

%e (End)

%e For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - _Dennis P. Walsh_, Nov 13 2015

%p a:= n-> mul(ceil(n/k), k=1..n):

%p seq(a(n), n=0..40); # _Dennis P. Walsh_, Nov 13 2015

%t Table[Product[Ceiling[n/k],{k,n}],{n,25}] (* _Harvey P. Dale_, Sep 18 2011 *)

%o (PARI) a(n)=prod(k=1,n-1,floor((n+k-1)/k)) \\ _Paul D. Hanna_, Feb 01 2013

%o (PARI) a(n)=prod(k=1,n-1,((k+1)/k)^floor((n-1)/k))

%o for(n=1,30,print1(a(n),", ")) \\ _Paul D. Hanna_, Feb 01 2013

%Y Cf. A010786, A131387, A075885, A131688, A308820, A092143.

%K nonn

%O 0,3

%A _Hieronymus Fischer_, Jul 08 2007

%E a(0)=1 prepended by _Alois P. Heinz_, Oct 30 2023