login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 1's in maximal Lucas representation (A130311) of n.
6

%I #13 Feb 17 2022 09:59:22

%S 0,1,1,2,2,2,3,3,3,3,4,3,3,4,4,4,4,5,4,4,4,5,4,4,5,5,5,5,6,4,4,5,5,5,

%T 5,6,5,5,5,6,5,5,6,6,6,6,7,5,5,5,6,5,5,6,6,6,6,7,5,5,6,6,6,6,7,6,6,6,

%U 7,6,6,7,7,7,7,8,5,5,6,6,6,6,7,6,6,6,7

%N Number of 1's in maximal Lucas representation (A130311) of n.

%H Amiram Eldar, <a href="/A131343/b131343.txt">Table of n, a(n) for n = 0..10000</a>

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibrep.html">Using the Fibonacci numbers to represent whole numbers</a>.

%F a(n) = A007953(A130311(n)). - _Amiram Eldar_, Feb 17 2022

%t lazy = Select[IntegerDigits[Range[400], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[# * Reverse@LucasL[Range[0, Length[#] - 1]]] & /@ lazy; Join[{0}, Plus@@@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]] (* _Amiram Eldar_, Feb 17 2022 *)

%Y Cf. A000032, A007895, A130311, A116543.

%K nonn,base

%O 0,4

%A _Casey Mongoven_, Jun 29 2007

%E a(0) and more terms from _Amiram Eldar_, Feb 17 2022