Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 08 2022 08:45:31
%S 1,1,1,1,1,1,1,1,3,1,1,1,5,3,1,1,1,7,5,5,1,1,1,9,7,11,5,1,1,1,11,9,19,
%T 11,7,1,1,1,13,11,29,19,19,7,1,1,1,15,13,41,29,39,19,9,1,1,1,17,15,55,
%U 41,69,39,29,9,1,1,1,19,17,71,55,111,69,69,29,11,1,1,1,21,19,89,71,167,111,139,69,41,11,1
%N Triangle read by rows: T(n,k) = 2*binomial(n-floor((k+1)/2),floor(k/2)) - 1, 0<=k<=n.
%C Row sums are in A131269. Reversal = triangle A131270.
%H G. C. Greubel, <a href="/A131268/b131268.txt">Rows n = 0..100 of triangle, flattened</a>
%F Equals 2*A065941 - A000012, where A065941 = Pascal's triangle with repeated columns; and A000012 = (1; 1,1; 1,1,1;...) as an infinite lower triangular matrix.
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 1, 1;
%e 1, 1, 3, 1;
%e 1, 1, 5, 3, 1;
%e 1, 1, 7, 5, 5, 1;
%e 1, 1, 9, 7, 11, 5, 1;
%e 1, 1, 11, 9, 19, 11, 7, 1;
%e 1, 1, 13, 11, 29, 19, 19, 7, 1;
%e 1, 1, 15, 13, 41, 29, 39, 19, 9, 1;
%e 1, 1, 17, 15, 55, 41, 69, 39, 29, 9, 1;
%e 1, 1, 19, 17, 71, 55, 111, 69, 69, 29, 11, 1;
%e 1, 1, 21, 19, 89, 71, 167, 111, 139, 69, 41, 11, 1;
%e ...
%p T := proc (n, k) options operator, arrow; 2*binomial(n-floor((1/2)*k+1/2), floor((1/2)*k))-1 end proc: for n from 0 to 12 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form. - _Emeric Deutsch_, Jul 15 2007
%t Table[2*Binomial[n -Floor[(k+1)/2], Floor[k/2]] -1, {n,0,14}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 10 2019 *)
%o (Magma) [2*Binomial(n-Floor((k+1)/2), Floor(k/2))-1: k in [0..n], n in [0..14]]; // _Bruno Berselli_, May 03 2012
%o (PARI) T(n,k) = 2*binomial(n- (k+1)\2, k\2) -1; \\ _G. C. Greubel_, Jul 10 2019
%o (Sage) [[2*binomial(n -floor((k+1)/2), floor(k/2)) -1 for k in (0..n)] for n in (0..14)] # _G. C. Greubel_, Jul 10 2019
%Y Cf. A065941, A000012, A131269, A131270.
%K nonn,tabl
%O 0,9
%A _Gary W. Adamson_, Jun 23 2007
%E More terms from _Emeric Deutsch_, Jul 15 2007