login
Triangular sequence of a Gray code type made from Pascal's triangle modulo 2 as b(n,m)=Mod[binomial[n,m],2]:A047999: a(n,m)=Mod[b(n,m)+b(n,m+1),2].
0

%I #6 Dec 02 2018 23:10:47

%S 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,

%T 1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0,1

%N Triangular sequence of a Gray code type made from Pascal's triangle modulo 2 as b(n,m)=Mod[binomial[n,m],2]:A047999: a(n,m)=Mod[b(n,m)+b(n,m+1),2].

%C An XOR of the sequence terms of A047999 is the algorithm.

%F b(n,m)=Mod[binomial[n,m],2]: a(n,m)=Mod[b(n,m)+b(n,m+1),2]

%e {1},

%e {1, 1},

%e {1, 1, 1},

%e {1, 1, 1, 1},

%e {1, 1, 0, 0, 1},

%e {1, 1, 0, 0, 1, 1},

%e {1, 1, 1, 0, 1, 0, 1},

%e {1, 1, 1, 1, 1, 1, 1, 1},

%e {1, 1, 0, 0, 0, 0, 0, 0, 1},

%e {1, 1, 0, 0, 0, 0, 0, 0, 1, 1},

%e {1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1}

%t a = Table[Table[Mod[Binomial[n, m], 2], {m, 0, 10}], {n, 0, 10}]; b = Table[Table[If[m <= n && m > 1, Mod[a[[n, m]] + a[[n, m + 1]], 2], 1], {m, 0, n}], {n, 0, 10}]; Flatten[b]

%Y Cf. A047999, A122944.

%K nonn,uned,tabl

%O 1,1

%A _Roger L. Bagula_, Sep 27 2007