login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that 1 - S(n) = 0, where S(n) = (S(n-1) + A000040(n))*(-1)^n; S(0)=0, n=>1.
1

%I #3 Mar 30 2012 18:35:47

%S 2,4,6,8,12,14,190,194,306,308,462,464,472,474,476,478,490,1884,1890,

%T 1938,23636,23656,23850,25226,25834,25984,26642,26650,26924,26998,

%U 27000,311922,313880,313946,331676,331762,331782,332676,377078,377518,377666

%N Numbers n such that 1 - S(n) = 0, where S(n) = (S(n-1) + A000040(n))*(-1)^n; S(0)=0, n=>1.

%C The terms are equal to A130642 for n/2 odd (100 terms) and to A130643 for n/2 even (86 terms).

%e S(11)=(..((((0+2)*-1)+3)*1)+5)*-1)+7)*1)+11)*- 1)+13)*1)+...+29)*1)+31)*-1 = -36, 1 - S(12)=1 - (-36 + 37)*1 = 0, hence 12 is a term.

%e S(13)=(..((((0+2)*-1)+3)*1)+5)*-1)+7)*1)+11)*- 1)+13)*1)+...+37)*1)+41)*-1 = -42, 1 - S(14)=1 - (-42 + 43)*1 = 0, hence 14 is a term.

%t S=0;a=0; Do[S=(S+Prime[n])*(-1)^n; If[1-S==0,a++; Print[a," ",n]], {n, 1, 10^8, 1}]

%Y Cf. A130642, A130643, A008347, A066033, A000040.

%K nonn

%O 1,1

%A _Manuel Valdivia_, Sep 26 2007